To our customers,

Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.
Notice

1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.

4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and “Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.
M16C/65 Group
Procedure for successive serial I/O transmission/reception using the DMAC

1. Abstract
This application note presents the procedure for successive serial I/O transmission/reception using the DMAC and an example on how to use it.

2. Introduction
This application note is applied to the M16C/65 group microcomputers.

This application note can be used with other M16C Family MCUs which have the same special function registers (SFRs) as the above group. Check the manual for any modifications to functions. Careful evaluation is recommended before using the program described in this application note.
3. **Explanation of the example procedure**

The example procedure selects serial I/O transmission (or reception) for the cause of request to the DMAC, and writes the next data to the transmit buffer (or reads from the receive buffer) at high speed in synchronism with the I/O transmission (or reception). This operation is performed successively as many times as the number of DMAC transfers needed.

3.1 **Example connection**

Figure 1 shows an example device connection for successive transmission/reception.

![Figure 1. Example Connection for Successive Transmission/Reception](image-url)
3.2 Setting-up successive transmission

The following shows how to set up the device for the case where 8 bytes of data are successively transmitted.

Usage Example:

- System
 VCC1=VCC2=5.0V, XIN=16MHz
- DMAC Setting
 DMA Request Factors=UART0 transfer, Single transfer, Transfer unit = 8 bits, Transfer source address direction=Forward direction, Transfer destination address direction=fixed (U0TB register)
- Serial I/O Setting
 Clock synchronous serial I/O mode, BRG count source = f1SIO, Bit Rates=62500bps (BRG=127), Transmit Interrupt Cause=Transmit buffer empty

Operation:

Specify UART0 transmission for the cause of request to the DMAC and after writing the first byte to the UART0 transmit buffer, transmit the remaining 7 bytes of data successively using a UART0 transmit interrupt request as a trigger. Figure 2 shows successive transmission/reception timing.

<table>
<thead>
<tr>
<th>CLK0</th>
<th>TxD0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 2. Successive Transmission/reception Timing
(1) Setting the serial I/O

Setting UART0 transmit/receive mode register

<table>
<thead>
<tr>
<th>b7</th>
<th>b6</th>
<th>b5</th>
<th>b4</th>
<th>b3</th>
<th>b2</th>
<th>b1</th>
<th>b0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

UART0 transmit/receive mode register [Address 0248h] U0MR

- **Serial I/O mode select bit**
 - 0 0 1: Clock synchronous serial I/O mode
- **Internal/external clock select bit**
 - 0: Internal clock
- **TXD, RXD I/O polarity reverse bit**
 - 0: No reverse

Setting UART0 transmit/receive control register 0

<table>
<thead>
<tr>
<th>b7</th>
<th>b6</th>
<th>b5</th>
<th>b4</th>
<th>b3</th>
<th>b2</th>
<th>b1</th>
<th>b0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

UART0 transmit/receive control register [Address 024Ch] U0C0

- **U0BRG count source select bit**
 - 0 0: fSiO is selected
- **Transmit register empty flag**
 - 0: Data present in transmit register (during transmission)
 - 1: No data present in transmit register (transmission completed)
- **CTS/RTS disable bit**
 - 1: CTS/RTS function disabled
- **Data output select bit**
 - 0: CMOS output
- **CLK polarity select bit**
 - 0: Transmit data is output at falling edge of transfer clock
- **Transfer format select bit**
 - 0: LSB first

Setting UART0 transmit/receive control register 1

<table>
<thead>
<tr>
<th>b7</th>
<th>b6</th>
<th>b5</th>
<th>b4</th>
<th>b3</th>
<th>b2</th>
<th>b1</th>
<th>b0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

UART0 transmit/receive control register 1 [Address 024Dh] U0C1

- **Transmit enable bit**
 - 0: Transmission disabled
- **Transmit buffer empty bit**
 - 0: Data present in U0TB register
 - 1: No data present in U0TB register
- **Receive enable bit**
 - 0: Reception disabled
- **Receive complete flag**
 - 0: No data present in U0RB register
 - 1: Data present in U0RB register
- **Data logic select bit**
 - 0: No reverse
- **Error signal output enable bit**
 - 0: Output disabled
Setting UART transmit/receive control register 2

<table>
<thead>
<tr>
<th>b7</th>
<th>b6</th>
<th>b5</th>
<th>b4</th>
<th>b3</th>
<th>b2</th>
<th>b1</th>
<th>b0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

- **UART0 transmit interrupt cause select bit**
 - 0 : Transmit buffer empty
- **UART1 transmit interrupt cause select bit**
- **UART0 continuous receive mode enable bit**
 - 0 : Continuous receive mode disabled
- **UART1 continuous receive mode enable bit**
- **UART1 CLK, CLKS select bit 0**
- **UART1 CLK, CLKS select bit 1**
- **Separate UART0 CTS/RTS bit**
 - 0 : CTS/RTS shared pin

Set the U0SMR register (UART0 special mode register), U0SMR2 register (UART0 special mode register 2), U0SMR3 register (UART0 special mode register 3), and U0SMR4 register (UART0 special mode register 4) to “00h”.

Setting UART0 bit rate register

<table>
<thead>
<tr>
<th>b7</th>
<th>b6</th>
<th>b5</th>
<th>b4</th>
</tr>
</thead>
<tbody>
<tr>
<td>127</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

When the BRG count source = fSIO and f(XIN) = 16MHz, the transfer rate is \((16 \times 10^6) / 2 (127 + 1) = 62,500\) bps

Setting UART0 transmit interrupt control register

<table>
<thead>
<tr>
<th>b7</th>
<th>b6</th>
<th>b5</th>
<th>b4</th>
<th>b3</th>
<th>b2</th>
<th>b1</th>
<th>b0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

- **Interrupt priority level select bit**
 - b2 b1 b0
 - 0 0 0 : Level 0 (interrupt disabled)

(2) Setting the DMAC

Setting DMA0 source select register

<table>
<thead>
<tr>
<th>b7</th>
<th>b6</th>
<th>b5</th>
<th>b4</th>
<th>b3</th>
<th>b2</th>
<th>b1</th>
<th>b0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

- **DMA request source select bit**
 - b4 b3 b2 b1 b0
 - 0 1 0 1 0 : UART0 transmit
- **DMA request source expansion select bit**
 - 0 : Basic request source
Setting DMA0 control register

DMA0 control register [Address 018Ch] DM0CON

<table>
<thead>
<tr>
<th>b7</th>
<th>b0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

- **Transfer unit bit select bit**: 1 : 8 bits
- **Repeat transfer mode select bit**: 0 : Single transfer
- **DMA request bit**: 0 : DMA not requested
- **DMA enable bit**: 0 : Disabled
- **Source address direction select bit**: 1 : Forward (Bit 4 and bit 5 cannot be set to “1” simultaneously)
- **Destination address direction select bit**: 0 : Fixed (Bit 4 and bit 5 cannot be set to “1” simultaneously)

Setting DMA0 source pointer

DMA0 source pointer [Address 0182h to 0180h] SAR0

<table>
<thead>
<tr>
<th>b7</th>
<th>b0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Set the source address of transfer

Setting DMA0 destination pointer

DMA0 destination pointer [Address 0186h to 0184h] DAR0

<table>
<thead>
<tr>
<th>b7</th>
<th>b0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Set the destination address (U0TB) of transfer

Setting DMA0 transfer counter

DMA0 transfer counter [Address 0189h to 0188h] TCR0

<table>
<thead>
<tr>
<th>b7</th>
<th>b0</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>

Since the first byte of 8-byte successive transmission is written and then transferred to the U0TB register directly (not transferred by the DMAC), set the value “6” here so that 7 bytes will be transferred by DMA.

Setting DMA0 interrupt control register

DMA0 interrupt control register [Address 004Bh] DM0IC

<table>
<thead>
<tr>
<th>b7</th>
<th>b0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

- **Interrupt priority level select bit**: Set the priority level
(3) Enables interrupt (I flag = “1”)

(4) Setting DMA0 control register back again (to enable DMA)

Setting DMA0 control register

<table>
<thead>
<tr>
<th>b7</th>
<th>b6</th>
<th>b5</th>
<th>b4</th>
<th>b3</th>
<th>b2</th>
<th>b1</th>
<th>b0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DMA0 control register [Address 018Ch] DM0CON

DMA enable bit
1 : Enabled

(5) Enables transmit

Setting the TE bit in the U0C1 register to “1” (transmit enable)

<table>
<thead>
<tr>
<th>b7</th>
<th>b6</th>
<th>b5</th>
<th>b4</th>
<th>b3</th>
<th>b2</th>
<th>b1</th>
<th>b0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

UART0 transmit/receive control register 1 [Address 024Dh] U0C1

Transmit enable bit
1 : Transmission enabled

(6) Starting successive transmissions

Write the first byte of successive transmit data to the U0TB register. Thereafter, the other bytes of data are successively transmitted by means of the DMAC transfer initiated by a UART0 transmit interrupt request until the count set in the DMA transfer counter expires.

(7) DMAC transfer complete interrupt processing

Set the DMAC transfer complete flag.
3.3 Setting-up successive reception

The following shows how to set up the device for the case where 8 bytes of data are successively received.

Usage Example:

- **System**
 - VCC1=VCC2=5.0V, XIN=16MHz
- **DMAC Setting**
 - DMA Request Factors=UART0 reception, Single transfer, Transfer unit = 16 bits (including an error flag), Transfer source address direction=fixed (U0RB register), Transfer destination address direction=Forward direction
- **Serial I/O Setting**
 - Clock synchronous serial I/O mode, External clock (Note), Continuous receive mode enabled

Note:

When the input at the CLK0 pin before data reception is high (or low if the CKPOL bit in the U0C0 register = 1), the conditions described below must be met:

- TE bit in the U0C1 register = 1 (transmission enabled)
- RE bit in the U0C1 register = 1 (reception enabled)
- U0RB register is read

Operation:

Specify UART0 reception for the cause of request to the DMAC and after a dummy read of the UART0 receive buffer, receive the data successively using a UART0 receive interrupt as a trigger. Figure 3 shows successive reception timing.

![Figure 3. Successive Reception Timing](image-url)
(1) Setting the serial I/O

Setting UART0 transmit/receive mode register

<table>
<thead>
<tr>
<th>b7</th>
<th>b6</th>
<th>b5</th>
<th>b4</th>
<th>b3</th>
<th>b2</th>
<th>b1</th>
<th>b0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

UART0 transmit/receive mode register [Address 0248h] U0MR

- Serial I/O mode select bit
 - b2 b1 b0: 0 0 1 : Clock synchronous serial I/O mode
 - 1 : External clock

- Internal/external clock select bit
 - 1 : External clock

- TxD, RxD I/O polarity reverse bit
 - 0 : No reverse

Setting UART0 transmit/receive control register 0

<table>
<thead>
<tr>
<th>b7</th>
<th>b6</th>
<th>b5</th>
<th>b4</th>
<th>b3</th>
<th>b2</th>
<th>b1</th>
<th>b0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

UART0 transmit/receive control register [Address 024Ch] U0C0

- Transmit register empty flag
 - 0 : Data present in transmit register (during transmission)
 - 1 : No data present in transmit register (transmission completed)

- CTS/RTS disable bit
 - 1 : CTS/RTS function disabled

- Data output select bit
 - 0 : CMOS output

- CLK polarity select bit
 - 0 : Receive data is input at rising edge

- Transfer format select bit
 - 0 : LSB first

Setting UART0 transmit/receive control register 1

<table>
<thead>
<tr>
<th>b7</th>
<th>b6</th>
<th>b5</th>
<th>b4</th>
<th>b3</th>
<th>b2</th>
<th>b1</th>
<th>b0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

UART0 transmit/receive control register 1 [Address 024Dh] U0C1

- Transmit enable bit
 - 0 : Transmission disabled

- Transmit buffer empty bit
 - 0 : Data present in U0TB register
 - 1 : No data present in U0TB register

- Receive enable bit
 - 0 : Reception disabled

- Receive complete flag
 - 0 : No data present in U0RB register
 - 1 : Data present in U0RB register

- Data logic select bit
 - 0 : No reverse

- Error signal output enable bit
 - 0 : Output disabled
Procedure for successive serial I/O transmission/reception using the DMAC

Setting UART transmit/receive control register 2

```
0 0 1 0
```

- UART0 transmit interrupt cause select bit
 - 0: Transmit buffer empty
- UART1 transmit interrupt cause select bit
- UART0 continuous receive mode enable bit
 - 1: Continuous receive mode enabled
- UART1 continuous receive mode enable bit
- UART1 CLK, CLKS select bit 0
- UART1 CLK, CLKS select bit 1
- Separate UART0 CTS/RTS bit
 - 0: CTS/RTS shared pin

Set the U0SMR register (UART0 special mode register), U0SMR2 register (UART0 special mode register 2), U0SMR3 register (UART0 special mode register 3), and U0SMR4 register (UART0 special mode register 4) to “00h”.

Setting UART0 transmit interrupt control register

```
0 0 0 0 0 0 0 0
```

- Interrupt priority level select bit
 - b2 b1 b0
 - 0 0 0: Level 0 (interrupt disabled)

(2) Setting the DMAC

Setting DMA0 source select register

```
0 0 0 1 0 1 1
```

- DMA request source select bit
 - b4 b3 b2 b1 b0
 - 0 1 0 1 1: UART0 receive
- DMA request source expansion select bit
 - 0: Basic request source
Setting DMA0 control register

DMA0 control register [Address 018Ch] DM0CON

<table>
<thead>
<tr>
<th>Bit</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>b7, b0</td>
<td>Transfer unit bit select bit</td>
</tr>
<tr>
<td></td>
<td>0: 16 bits</td>
</tr>
<tr>
<td>b5</td>
<td>Repeat transfer mode select bit</td>
</tr>
<tr>
<td></td>
<td>0: Single transfer</td>
</tr>
<tr>
<td>b4</td>
<td>DMA request bit</td>
</tr>
<tr>
<td></td>
<td>0: DMA not requested</td>
</tr>
<tr>
<td>b3</td>
<td>DMA enable bit</td>
</tr>
<tr>
<td></td>
<td>0: Disabled</td>
</tr>
<tr>
<td>b2</td>
<td>Source address direction select bit</td>
</tr>
<tr>
<td></td>
<td>0: Fixed (Bit 4 and bit 5 cannot be set to “1” simultaneously)</td>
</tr>
<tr>
<td>b1, b0</td>
<td>Destination address direction select bit</td>
</tr>
<tr>
<td></td>
<td>1: Forward (Bit 4 and bit 5 cannot be set to “1” simultaneously)</td>
</tr>
</tbody>
</table>

Setting DMA0 source pointer

DMA0 source pointer [Address 0182h to 0180h] SAR0

<table>
<thead>
<tr>
<th>Bit</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>b7, b0</td>
<td>Set the source address (U0RB) of transfer</td>
</tr>
</tbody>
</table>

Setting DMA0 destination pointer

DMA0 destination pointer [Address 0186h to 0184h] DAR0

<table>
<thead>
<tr>
<th>Bit</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>b7, b0</td>
<td>Set the destination address of transfer</td>
</tr>
</tbody>
</table>

Setting DMA0 transfer counter

DMA0 transfer counter [Address 0189h to 0188h] TCR0

Because 8 bytes are to be received, set the transfer count – 1 = 7 here

Setting DMA0 interrupt control register

DMA0 interrupt control register [Address 004Bh] DM0IC

<table>
<thead>
<tr>
<th>Bit</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>b7</td>
<td>Interrupt priority level select bit</td>
</tr>
<tr>
<td></td>
<td>Set the interrupt priority level</td>
</tr>
</tbody>
</table>
(3) Enables interrupt (I flag = “1”)

(4) Setting DMA0 control register back again (to enable DMA)

<table>
<thead>
<tr>
<th>Setting DMA0 control register</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 0 1 0 0 0</td>
</tr>
<tr>
<td>DMA0 control register [Address 018Ch] DM0CON</td>
</tr>
<tr>
<td>DMA enable bit</td>
</tr>
<tr>
<td>1 : Enabled</td>
</tr>
</tbody>
</table>

(5) Enables transmit/receive

Set the TE and RE bits in the U0C1 register both to “1”, to enable transmission and reception.

<table>
<thead>
<tr>
<th>UART0 transmit/receive control register 1 [Address 024Dh] U0C1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1</td>
</tr>
<tr>
<td>Transmit enable bit</td>
</tr>
<tr>
<td>1 : Transmission enabled</td>
</tr>
<tr>
<td>Receive enable bit</td>
</tr>
<tr>
<td>1 : Reception enabled</td>
</tr>
</tbody>
</table>

(6) Starting successive reception
Access the U0RB register for dummy read to initiate successive reception.

(7) DMAC transfer complete interrupt processing
Check the received data for errors and, if necessary, reinitialize the serial I/O as error processing.
4. Reference

Hardware manual
M16C/65 Group Hardware Manual
(Use the most recent version of the document on the Renesas Technology Web site.)

Technical news/Technical update
(Use the most recent version of the document on the Renesas Technology Web site.)

Web-site and contact for support

Renesas Technology Web site
http://www.renesas.com/

Inquiries
http://www.renesas.com/inquiry
csc@renesas.com
Revision

<table>
<thead>
<tr>
<th>Rev.</th>
<th>Issue date</th>
<th>Revised Page</th>
<th>Point</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00</td>
<td>2009.10</td>
<td>-</td>
<td>First edition issued</td>
</tr>
</tbody>
</table>

All trademarks and registered trademarks are the property of their respective owners.
Notes regarding these materials

1. This document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas products for their use. Renesas neither makes warranties or representations with respect to the accuracy or completeness of the information contained in this document nor grants any license to any intellectual property rights or any other rights of Renesas or any third party with respect to the information in this document.

2. Renesas shall have no liability for damages or infringement of any intellectual property or other rights arising out of the use of any information in this document, including, but not limited to, product data, diagrams, charts, programs, algorithms, and application circuit examples.

3. You should not use the products or the technology described in this document for the purpose of military applications such as the development of weapons of mass destruction or for the purpose of any other military use. When exporting the products or technology described herein, you should follow the applicable export control laws and regulations, and procedures required by such laws and regulations.

4. All information included in this document such as product data, diagrams, charts, programs, algorithms, and application circuit examples, is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas products listed in this document, please confirm the latest product information with a Renesas sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas such as that disclosed through our website (http://www.renesas.com).

5. Renesas has used reasonable care in compiling the information included in this document, but Renesas assumes no liability whatsoever for any damages incurred as a result of errors or omissions in the information included in this document.

6. When using or otherwise relying on the information in this document, you should evaluate the information in light of the total system before deciding about the applicability of such information to the intended application. Renesas makes no representations, warranties or guaranties regarding the suitability of its products for any particular application and specifically disclaims any liability arising out of the application and use of the information in this document or Renesas products.

7. With the exception of products specified by Renesas as suitable for automobile applications, Renesas products are not designed, manufactured or tested for applications or otherwise in systems the failure or malfunction of which may cause a direct threat to human life or create a risk of human injury or which require especially high quality and reliability such as safety systems, or equipment or systems for transportation and traffic, healthcare, combustion control, aerospace and aeronautics, nuclear power, or undersea communication transmission. If you are considering the use of our products for such purposes, please contact a Renesas sales office beforehand. Renesas shall have no liability for damages arising out of the uses set forth above.

8. Notwithstanding the preceding paragraph, you should not use Renesas products for the purposes listed below:
 (1) artificial life support devices or systems
 (2) surgical implantations
 (3) healthcare intervention (e.g., excision, administration of medication, etc.)
 (4) any other purposes that pose a direct threat to human life

Renesas shall have no liability for damages arising out of the uses set forth in the above and purchasers who elect to use Renesas products in any of the foregoing applications shall indemnify and hold harmless Renesas Technology Corp., its affiliated companies and their officers, directors, and employees against any and all damages arising out of such applications.

9. You should use the products described herein within the range specified by Renesas, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas shall have no liability for malfunctions or damages arising out of the use of Renesas products beyond such specified ranges.

10. Although Renesas endeavors to improve the quality and reliability of its products, IC products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Please be sure to implement safety measures to guard against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other applicable measures. Among others, since the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.

11. In case Renesas products listed in this document are detached from the products to which the Renesas products are attached or affixed, the risk of accident such as swallowing by infants and small children is very high. You should implement safety measures so that Renesas products may not be easily detached from your products. Renesas shall have no liability for damages arising out of such detachment.

12. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written approval from Renesas.

13. Please contact a Renesas sales office if you have any questions regarding the information contained in this document, Renesas semiconductor products, or if you have any other inquiries.

© 2009. Renesas Technology Corp., All rights reserved.