1. Abstract

In transmitting data in UART mode, choose functions from those listed in Table 3.1. Operations of the marked items are described below. The examples are explained below using the M16C/65 Group.

2. Introduction

This application note is applied to the following MCUs:

MCU(s): M16C/63, 64A, 64C, 65, 65C, 6C, 5LD, 56D, 5L, 56, 5M, 57 Groups

This application note can be used with other M16C Family MCUs which have the same special function registers (SFRs) as the above groups. Check the manual for any modifications to functions. Careful evaluation is recommended before using the program described in this application note.
3. Chosen Function

Table 3.1 Chosen Functions

<table>
<thead>
<tr>
<th>Item</th>
<th>Set-up</th>
<th>Item</th>
<th>Set-up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clock prior to division select</td>
<td>✓</td>
<td>Division select</td>
<td>✓</td>
</tr>
<tr>
<td>Peripheral clock</td>
<td>✓</td>
<td>f1SIO</td>
<td>✓</td>
</tr>
<tr>
<td>Transfer clock source</td>
<td>✓</td>
<td>Internal clock (f1SIO/f2SIO/f8SIO/f32SIO)</td>
<td>✓</td>
</tr>
<tr>
<td>CTS function</td>
<td>✓</td>
<td>CTS function enabled</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note:
1. This function separates CTS0/RTS0, outputs RTS0 from the P6_0 pin, and inputs CTS0 from the P6_4 pin. When this function is selected, UART1 CTS/RTS function cannot be utilized. Set the UART1 CTS/RTS disable bit to “1”.

4. Operation

(1) Setting the transmit enable bit to “1” and writing transmission data to the UARTi transmit buffer register readies the data transmissible status.

(2) When input to the CTSi pin goes to “L”, transmission starts (the CTSi pin needs to be controlled on the reception side).

(3) Transmission data held in the UARTi transmit buffer register is transmitted to the UARTi transmit register. At this time, the first bit (the start bit) of the transmission data is transmitted from the TxDi pin. Then, data is transmitted, bit by bit, in sequence: LSB, ····, MSB, parity bit, and stop bit(s).

(4) When the stop bit(s) is (are) transmitted, the transmit register empty flag goes to “1”, which indicates that transmission is completed. At this time, the UARTi transmit interrupt request bit goes to “1”. The transfer clock stops at “H” level.

(5) If the transmission condition of the next data is ready when transmission is completed, a start bit is generated following to stop bit(s), and the next data is transmitted.
Figure 4.1 shows the operation timing.

Example of operation

When confirming stop bit, stopped transfer clock once because CTS = "H". Started transfer clock again to start transmitting immediately after confirming CTS = "L".

Transfer clock

(1) Transmission enabled
(2) Confirming CTS
(3) Start transmission
(4) Confirming stop bit
(5) Start transmission

Transmit enable bit (TE)

"1"
"0"

Transmit buffer empty flag (TI)

"1"
"0"

CTSi

"H"
"L"

TxDi

"1"
"0"

Transmit register empty flag (TXEPT)

"1"
"0"

Transmit interrupt request bit (IR)

"1"
"0"

Shown in () are bit symbols.

The above timing applies to the following settings:
- Parity is enabled.
- One stop bit.
- CTS function is selected.
- Transmit interrupt cause select bit = "1".

\[T_c = 16 \frac{(n + 1)}{f} \text{ or } 16 \frac{(n + 1)}{f_{\text{EXT}}} \]

fi: frequency of BRGi count source (f1SIO, f2SIO, f32SIO, f2SIO)
n: value set to BRGi

Figure 4.1 Operation Timing of Transmission in UART Mode
5. **Set-up Procedure**

Setting UART clock select register

(Set the OCOSEL0 or OCOSEL1 bit before setting other registers associated with UART0 to UART2 and UART5 to UART7. After changing the OCOSEL0 or OCOSEL1 bit, set other registers associated with UART0 to UART2 and UART5 to UART7 again.)

- UART clock select register [Address 0252h] UCLKSEL0
 - b7 b6 b5 b4 b3 b2 b1 b0
 - UART0 to UART2 clock prior to division selected bit
 - 0: f1
 - UART5 to UART7 clock prior to division selected bit
 - 0: f1

Note: Set bits OCOSEL0 and OCOSEL1 while transmission/reception of UART0 to UART2 and UART5 to UART7 stops.

Setting UARTi transmit/receive mode register (i = 0 to 2, 5 to 7)

- UART0 transmit/receive mode register [Address 0248h] U0MR
- UART1 transmit/receive mode register [Address 0258h] U1MR
- UART2 transmit/receive mode register [Address 0268h] U2MR
- UART5 transmit/receive mode register [Address 0288h] U5MR
- UART6 transmit/receive mode register [Address 0298h] U6MR
- UART7 transmit/receive mode register [Address 02A8h] U7MR

- Serial I/O mode select bit
 - b7 b6 b5: Transfer data 8 bits long
 - b4: Internal/external clock select bit
 - 0: Internal clock
- Stop bit length select bit
 - 0: One stop bit
- Odd/even parity select bit (Valid when bit 6 = “1”)
 - 0: Odd parity
 - 1: Even parity
- Parity enabled bit
 - 1: Parity enabled
- TxD, RxD I/O polarity reverse bit
 - Usually set to “0”
Setting UART\(i\) transmit/receive control register \((i = 0 \text{ to } 2, 5 \text{ to } 7)\)

- **UART0 transmit/receive control register** [Address 024Ch] \(\text{U0C0}\)
- **UART1 transmit/receive control register** [Address 025Ch] \(\text{U1C0}\)
- **UART2 transmit/receive control register** [Address 026Ch] \(\text{U2C0}\)
- **UART5 transmit/receive control register** [Address 028Ch] \(\text{U5C0}\)
- **UART6 transmit/receive control register** [Address 029Ch] \(\text{U6C0}\)
- **UART7 transmit/receive control register** [Address 02ACh] \(\text{U7C0}\)

- **UiBRG count source select bit**
 - 0 0 : \(f_{1SIO}\) or \(f_{2SIO}\) is selected (Note1)
 - 0 1 : \(f_{2SIO}\) is selected
 - 1 0 : \(f_{32SIO}\) is selected
 - 1 1 : Do not set to this value

- **CTS/RTS function select bit** (Valid when bit4 = “0”)
 - 0 : CTS function is selected (Note2)
 - 1 : RTS function is selected

- **Transmit register empty flag**
 - 0 : Data present in transmit register (during transmission)
 - 1 : No data present in transmit register (transmission completed)

- **CTS/RTS disable bit**
 - 0 : CTS/RTS function enabled
 - Must always be “0” in UART mode

- **Data output select bit**
 - 0 : Pins TxDi/SDAi and SCLi are CMOS output
 - 1 : Pins TxDi/SDAi and SCLi are N-channel open-drain output

- **Transfer format select bit**
 - 0 : LSB first

Setting UART transmit/receive control register 2

- **UART transmit/receive control register 2** [Address 0250h] \(\text{UCON}\)

- **UART0 transmit Interrupt cause select bit**
 - 1 : Transmission completed \((\text{TXEPT} = 1)\)

- **UART1 transmit Interrupt cause select bit**
 - 1 : Transmission completed \((\text{TXEPT} = 1)\)

- **Must always be “0” in UART mode**

- **Invalid in UART mode**

- **Separate UART0 CTS/RTS bit**
 - 0 : CTS/RTS shared pin

Note 1: When the PCLK1 bit in the PCLKR register is “1”, the selected clock source is \(f_{1SIO}\). When the PCLK1 bit is “0”, the selected clock source is \(f_{2SIO}\).

Note 2: Set the corresponding port direction register to “0” (input mode).
Setting UARTi transmit/receive control register (i = 0 to 2, 5 to 7)

- UART0 transmit/receive control register 1 [Address 024Dh] U0C1
- UART1 transmit/receive control register 1 [Address 025Dh] U1C1
- UART2 transmit/receive control register 1 [Address 026Dh] U2C1
- UART5 transmit/receive control register 1 [Address 028Dh] U5C1
- UART6 transmit/receive control register 1 [Address 029Dh] U6C1
- UART7 transmit/receive control register 1 [Address 02ADh] U7C1

Data logic select bit
0 : No reverse

Error signal output enable bit
0 : Output disable

Transmission enabled

Writing transmit data

UART0 transmit buffer register [Address 024Bh, 024Ah] U0TB
UART1 transmit buffer register [Address 025Bh, 025Ah] U1TB
UART2 transmit buffer register [Address 026Bh, 026Ah] U2TB
UART5 transmit buffer register [Address 028Bh, 028Ah] U5TB
UART6 transmit buffer register [Address 029Bh, 029Ah] U6TB
UART7 transmit buffer register [Address 02ABh, 02AAh] U7TB

Setting transmission data

When CTSi input level = “L”

Start transmission

Checking the status of UARTi transmit/receive control register (i = 0 to 2, 5 to 7)

UART0 transmit/receive control register1 [Address 024Dh] U0C1
UART1 transmit/receive control register1 [Address 025Dh] U1C1
UART2 transmit/receive control register1 [Address 026Dh] U2C1
UART5 transmit/receive control register1 [Address 028Dh] U5C1
UART6 transmit/receive control register1 [Address 029Dh] U6C1
UART7 transmit/receive control register1 [Address 02ADh] U7C1

Transmit buffer empty bit
0 : Data present in transmit buffer register
1 : No data present in transmit buffer register (Writing next transmit data enabled)

Writing next transmit data

UART0 transmit buffer register [Address 024Bh, 024Ah] U0TB
UART1 transmit buffer register [Address 025Bh, 025Ah] U1TB
UART2 transmit buffer register [Address 026Bh, 026Ah] U2TB
UART5 transmit buffer register [Address 028Bh, 028Ah] U5TB
UART6 transmit buffer register [Address 029Bh, 029Ah] U6TB
UART7 transmit buffer register [Address 02ABh, 02AAh] U7TB

Setting transmission data

Transmission is complete
6. Sample Code

Sample code can be downloaded from the Renesas Electronics website.

7. Reference Documents

M16C/63 Group User’s Manual: Hardware Rev.2.00
M16C/64A Group User’s Manual: Hardware Rev.2.00
M16C/64C Group User’s Manual: Hardware Rev.1.00
M16C/65 Group User’s Manual: Hardware Rev.2.00
M16C/65C Group User’s Manual: Hardware Rev.1.00
M16C/6C Group User’s Manual: Hardware Rev.2.00
M16C/5LD Group, M16C/56D Group User’s Manual: Hardware Rev.1.10
M16C/5L Group, M16C/56 Group User’s Manual: Hardware Rev.1.00
M16C/5M Group, M16C/57 Group User’s Manual: Hardware Rev.1.01

The latest version can be downloaded from the Renesas Electronics website.

Technical Update/Technical News
The latest information can be downloaded from the Renesas Electronics website.

C Compiler Manual
M16C Series, R8C Family C Compiler Package V.5.45
C Compiler User’s Manual Rev.2.00
The latest version can be downloaded from the Renesas Electronics website.

8. Website and Support

Renesas Electronics website
http://www.renesas.com/

Inquiries
http://www.renesas.com/inquiry
<table>
<thead>
<tr>
<th>Rev.</th>
<th>Date</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00</td>
<td>Oct. 30, 2009</td>
<td>First edition issued</td>
</tr>
<tr>
<td>1.01</td>
<td>Apr. 28, 2011</td>
<td>Add: M16C/63, M16C/64A, M16C/64C, M16C/65C, M16C/6C, M16C/5LD, M16C/56D, M16C/5L, M16C/56, M16C/5M, and M16C/57</td>
</tr>
</tbody>
</table>
General Precautions in the Handling of MPU/MCU Products

The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the products covered by this manual, refer to the relevant sections of the manual. If the descriptions under General Precautions in the Handling of MPU/MCU Products and in the body of the manual differ from each other, the description in the body of the manual takes precedence.

<table>
<thead>
<tr>
<th>1. Handling of Unused Pins</th>
</tr>
</thead>
<tbody>
<tr>
<td>Handle unused pins in accord with the directions given under Handling of Unused Pins in the manual.</td>
</tr>
<tr>
<td>— The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible. Unused pins should be handled as described under Handling of Unused Pins in the manual.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2. Processing at Power-on</th>
</tr>
</thead>
<tbody>
<tr>
<td>The state of the product is undefined at the moment when power is supplied.</td>
</tr>
<tr>
<td>— The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the moment when power is supplied.</td>
</tr>
<tr>
<td>In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the moment when power is supplied until the reset process is completed.</td>
</tr>
<tr>
<td>In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the moment when power is supplied until the power reaches the level at which resetting has been specified.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3. Prohibition of Access to Reserved Addresses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Access to reserved addresses is prohibited.</td>
</tr>
<tr>
<td>— The reserved addresses are provided for the possible future expansion of functions. Do not access these addresses; the correct operation of LSI is not guaranteed if they are accessed.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4. Clock Signals</th>
</tr>
</thead>
<tbody>
<tr>
<td>After applying a reset, only release the reset line after the operating clock signal has become stable. When switching the clock signal during program execution, wait until the target clock signal has stabilized.</td>
</tr>
<tr>
<td>— When the clock signal is generated with an external resonator (or from an external oscillator) during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Moreover, when switching to a clock signal produced with an external resonator (or by an external oscillator) while program execution is in progress, wait until the target clock signal is stable.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5. Differences between Products</th>
</tr>
</thead>
<tbody>
<tr>
<td>Before changing from one product to another, i.e. to one with a different part number, confirm that the change will not lead to problems.</td>
</tr>
<tr>
<td>— The characteristics of MPU/MCU in the same group but having different part numbers may differ because of the differences in internal memory capacity and layout pattern. When changing to products of different part numbers, implement a system-evaluation test for each of the products.</td>
</tr>
</tbody>
</table>
1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our websites.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No licenses, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

3. If you should alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.

4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and “Specific”. The recommended applications for each Renesas Electronics product depend on the product’s quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as ”Specific” without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall have no liability for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failures at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by the in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of reconfigurable computer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries. (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries. (Note 2) "Renesas Electronics products" means any product developed or manufactured by or for Renesas Electronics.

SALES OFFICES

Renesas Electronics Corporation

http://www.renesas.com

Refer to "http://www.renesas.com" for the latest and detailed information.

Renesas Electronics America Inc.
2890 South Boulevard (Santa Clara, CA 95050-2554, U.S.A.
Tel: +1-408-588-6000, Fax: +1-408-588-6130

Renesas Electronics Canada Limited
1731 Nicholson Road (Newmarket, Ontario L3Y 9C3, Canada
Tel: +1-905-988-3441, Fax: +1-905-988-3220

Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 SFH, UK
Tel: +44-1628-585-100, Fax: +44-1628-585-900

Renesas Electronics Europe GmbH
Accadenzstrasse 10, 40472 Düsseldorf, Germany
Tel: +49-211-6503-0, +49-211-6503-1327

Renesas Electronics (China) Co., Ltd.
7th Floor, Quantum Plaza, No.27 ZhRunLu Haidian District, Beijing 100083, P.R.China
Tel: +86-10-8235-1113, Fax: +86-10-8235-7679

Renesas Electronics (Shanghai) Co., Ltd.
Unit 204, 205, AZA Center, No.1233 Lujiazui Ring Rd., Pudong District, Shanghai 200120, China
Tel: +86-21-5877-1818, +86-21-6687-7888

Renesas Electronics Hong Kong Limited
12/F., The Landmark, 16/F., Landmark 2, Landmark Place, 133 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2886-9318, Fax: +852-2886-9022/9044

Renesas Electronics Taiwan Co., Ltd.
193 Prince Edward Road West, Kowloon, Hong Kong
Tel: +852-2886-9318, Fax: +852-2886-9022/9044

Renesas Electronics Singapore Pte. Ltd.
1 Farbouf Point Avenue, #05-10, Keppel Bay Tower, Singapore 098632
Tel: +65-6213-0200, Fax: +65-6278-8001

Renesas Electronics Malaysia Sdn. Bhd.
Unit 906, Block B, Menara Ancom, Acom Trade Centre, No. 18, Jln Permaiara Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60 3-7955-6900, Fax: +60 3-7955-9510

Renesas Electronics Korea Co., Ltd.
17F., Jamsil RA in Bldg. 720-6, Tsukishim-Dong, Kangnam-Ku, Seoul 135-080, Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5141

© 2011 Renesas Electronics Corporation. All rights reserved.

Colophon 1.0