1. Abstract

In receiving data in clock-synchronous serial I/O mode, choose functions from those listed in Table 3.1. Operations of the marked items are described below. The examples are explained below using the M16C/65 Group.

2. Introduction

This application note is applied to the following MCUs:

MCU(s): M16C/63, 64A, 64C, 65, 65C, 6C, 5LD, 56D, 5L, 56, 5M, 57 Groups

This application note can be used with other M16C Family MCUs which have the same special function registers (SFRs) as the above groups. Check the manual for any modifications to functions. Careful evaluation is recommended before using the program described in this application note.
3. Chosen Function

Table 3.1 Chosen Functions

<table>
<thead>
<tr>
<th>Item</th>
<th>Set-up</th>
<th>Item</th>
<th>Set-up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transfer clock source</td>
<td>Internal clock (f1SIO/f2SIO/f8SIO/f32SIO)</td>
<td>Continuous receive mode</td>
<td>✓ Disabled</td>
</tr>
<tr>
<td></td>
<td>✓ External clock (CLKi pin)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RTS function</td>
<td>✓ RTS function enabled</td>
<td>Output transfer clock to multiple pins (1)</td>
<td>✓ Not selected</td>
</tr>
<tr>
<td></td>
<td>RTS function disable</td>
<td></td>
<td>Selected</td>
</tr>
<tr>
<td>CLK polarity</td>
<td>✓ Input reception data at the rising edge of the transfer clock</td>
<td>Data logic select function</td>
<td>✓ No reverse</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Reverse</td>
</tr>
<tr>
<td>Transfer clock</td>
<td>✓ LSB first</td>
<td>Separate</td>
<td>✓ Shared pin</td>
</tr>
<tr>
<td></td>
<td>MSB first</td>
<td>CTS/RTS pins (2)</td>
<td>Separated</td>
</tr>
</tbody>
</table>

Notes:
1. This can be selected only when UART1 is used in combination with the internal clock. When this function is selected, UART1 CTS/RTS function can not be utilized. Set the UART1 CTS/RTS disable bit to “1”.
2. This function separates CTS0/RTS0, outputs RTS0 from the P6_0 pin, and inputs CTS0 from the P6_4 pin. When this function is selected, UART1 CTS/RTS function can not be utilized. Set the UART1 CTS/RTS disable bit to “1”.

4. Operation

(1) Writing dummy data to the UARTi transmit buffer register, setting the receive enable bit to “1”, and the transmit enable bit to “1”, makes the data receivable status ready. At this time, the output from the RTSi pin goes to “L” level, which informs the transmission side that the data receivable status is ready (output the transfer clock from the IC on the transmission side after checking that the RTS output has gone to “L” level).

(2) In synchronization with the first rising edge of the transfer clock, the input signal to the RxDi pin is stored in the highest bit of the UARTi receive register. Then, data is taken in by shifting right the content of the UARTi reception data in synchronization with the rising edges of the transfer clock.

(3) When 1-byte data lines up in the UARTi receive register, the content of the UARTi receive register is transmitted to the UARTi receive buffer register. The transfer clock stops at “H” level. At this time, the receive complete flag and the UARTi receive interrupt request bit goes to “1”.

(4) The receive complete flag goes to “0” when the lower-order byte of the UARTi buffer register is read.
Figure 4.1 shows the operation timing.

Example of wiring

![Diagram of wiring](image)

Example of operation

- **Receive enable bit (RE)**
 - “1”
 - “0”
- **Transmit enable bit (TE)**
 - “1”
 - “0”
- **Transmit buffer empty flag (TI)**
 - “1”
 - “0”
- **RTSi**
 - “H”
 - “L”
- **CLKi**
- **RxDi**
- **Receive complete flag (RI)**
 - “1”
 - “0”
- **Receive interrupt request bit (IR)**
 - “1”
 - “0”

Shown in () are bit symbols.

The above timing applies to the following settings:
- External clock is selected.
- RTS function is selected.
- CLK polarity select bit = “0”.

Dummy data set in UART transmit buffer register

Transfer red from UART transmit buffer register to UART transmit register

Reception data is taken in

Clear to “0” when interrupt request is accepted, or cleared by software

Make sure that the following conditions are met when the CLKi pin input = “H” before data reception
- Transmit enable bit = “1”
- Receive enable bit = “1”
- Dummy data write to UART transmit buffer register

text: frequency of external clock
5. Set-up Procedure

Setting UARTi transmit/receive mode register ($i = 0$ to 2, 5 to 7)

- UART0 transmit/receive mode register [Address $0248h$] U0MR
- UART1 transmit/receive mode register [Address $0258h$] U1MR
- UART2 transmit/receive mode register [Address $0268h$] U2MR
- UART5 transmit/receive mode register [Address $0288h$] U5MR
- UART6 transmit/receive mode register [Address $0298h$] U6MR
- UART7 transmit/receive mode register [Address $02A8h$] U7MR

<table>
<thead>
<tr>
<th>Bit 7</th>
<th>Bit 0</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>Internal/external clock select bit</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>External clock</td>
</tr>
</tbody>
</table>

- **Must be fixed to “001”**

TxD, RxD I/O polarity reverse bit

- Usually set to “0”

Internal/external clock select bit

- **Invalid in clock synchronous I/O mode**

Setting UARTi transmit/receive control register ($i = 0$ to 2, 5 to 7)

- UART0 transmit/receive control register [Address $024Ch$] U0C0
- UART1 transmit/receive control register [Address $025Ch$] U1C0
- UART2 transmit/receive control register [Address $026Ch$] U2C0
- UART5 transmit/receive control register [Address $028Ch$] U5C0
- UART6 transmit/receive control register [Address $029Ch$] U6C0
- UART7 transmit/receive control register [Address $02ACh$] U7C0

<table>
<thead>
<tr>
<th>Bit 7</th>
<th>Bit 0</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>UiBRG count source select bit</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>f8SIO is selected</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>f32SIO is selected</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>Do not set to this value</td>
</tr>
</tbody>
</table>

CTS/RTS function select bit (Valid when bit4 = “0”)

- **1**: RTS function is selected (Note 2)

Transmit register empty flag

- **0**: Data present in transmit register (during transmission)
- **1**: No data present in transmit register (transmission completed)

CTS/RTS disable bit

- **0**: CTS/RTS function enabled
- **1**: CTS/RTS function disabled

Data output select bit

- **0**: Pins TxDi/SDAi and SCl are CMOS output
- **1**: Pins TxDi/SDAi and SCl are N-channel open-drain output

CLK polarity select bit

- **0**: Transmission data is output at falling edge of transfer clock and reception data is input at rising edge
- **1**: LSB first

Transfer format select bit

- **0**: LSB first

Note 1: When the PCLK1 bit in the PCLKR register is “1”, the selected clock source is f1SIO. When the PCLK1 bit is “0”, the selected clock source is f2SIO.

Note 2: Set the corresponding port direction register to “1” (output mode).
Setting UART transmit/receive control register 2

UART transmit/receive control register 2 [Address 0250h] UCON

- UART0 continuous receive mode enable bit
 - 0: Continuous receive mode disabled

- UART1 continuous receive mode enable bit
 - 0: Continuous receive mode disabled

- Valid when bit5 = "1"

- UART1 CLK/CLKS select bit 1
 - 0: CLK output is only from CLK1

- Separate UART0 CTS/RTS bit
 - 0: CTS/RTS shared pin

Setting UARTi transmit/receive control register 1 (i = 0 to 2, 5 to 7)

UART0 transmit/receive control register 1 [Address 024Dh] U0C1
UART1 transmit/receive control register 1 [Address 025Dh] U1C1
UART2 transmit/receive control register 1 [Address 026Dh] U2C1
UART5 transmit/receive control register 1 [Address 028Dh] U5C1
UART6 transmit/receive control register 1 [Address 029Dh] U6C1
UART7 transmit/receive control register 1 [Address 02ADh] U7C1

- Data logic select bit
 - 0: No reverse

- Error signal output enable bit
 - Must always be "0" in clock synchronous I/O mode

Reception enabled

UART0 transmit/receive control register 1 [Address 024Dh] U0C1
UART1 transmit/receive control register 1 [Address 025Dh] U1C1
UART2 transmit/receive control register 1 [Address 026Dh] U2C1
UART5 transmit/receive control register 1 [Address 028Dh] U5C1
UART6 transmit/receive control register 1 [Address 029Dh] U6C1
UART7 transmit/receive control register 1 [Address 02ADh] U7C1

- Transmit enable bit
 - 1: Transmission enabled

- Receive enable bit
 - 1: Reception enabled
Writing dummy data

UART0 transmit buffer register [Address 024Bh, 024Ah] U0TB
UART1 transmit buffer register [Address 025Bh, 025Ah] U1TB
UART2 transmit buffer register [Address 026Bh, 026Ah] U2TB
UART5 transmit buffer register [Address 028Bh, 028Ah] U5TB
UART6 transmit buffer register [Address 029Bh, 029Ah] U6TB
UART7 transmit buffer register [Address 02ABh, 02AAh] U7TB

Setting dummy data

Start reception

Checking completion of reception

UART0 transmit/receive control register 1 [Address 024Dh] U0C1
UART1 transmit/receive control register 1 [Address 025Dh] U1C1
UART2 transmit/receive control register 1 [Address 026Dh] U2C1
UART5 transmit/receive control register 1 [Address 028Dh] U5C1
UART6 transmit/receive control register 1 [Address 029Dh] U6C1
UART7 transmit/receive control register 1 [Address 02ADh] U7C1

Receive complete flag
0 : No data present in receive buffer register
1 : Data present in receive buffer register

Checking error

UART0 receive buffer register [Address 024Fh, 024Eh] U0RB
UART1 receive buffer register [Address 025Fh, 025Eh] U1RB
UART2 receive buffer register [Address 026Fh, 026Eh] U2RB
UART5 receive buffer register [Address 028Fh, 028Eh] U5RB
UART6 receive buffer register [Address 029Fh, 029Eh] U6RB
UART7 receive buffer register [Address 02AFh, 02AEh] U7RB

Receive data
Overrun error flag
0 : No overrun error
1 : Overrun error found

Processing after reading out reception data
6. Sample Code

Sample code can be downloaded from the Renesas Electronics website.

7. Reference Documents

M16C/63 Group User's Manual: Hardware Rev.2.00
M16C/64A Group User's Manual: Hardware Rev.2.00
M16C/64C Group User's Manual: Hardware Rev.1.00
M16C/65 Group User's Manual: Hardware Rev.2.00
M16C/65C Group User's Manual: Hardware Rev.1.00
M16C/66 Group User’s Manual: Hardware Rev.2.00
M16C/5LD Group, M16C/56D Group User’s Manual: Hardware Rev.1.10
M16C/5L Group, M16C/56 Group User’s Manual: Hardware Rev.1.00
M16C/5M Group, M16C/57 Group User’s Manual: Hardware Rev.1.01
The latest version can be downloaded from the Renesas Electronics website.

C Compiler Manual
M16C Series, R8C Family C Compiler Package V.5.45
C Compiler User’s Manual Rev.2.00
The latest version can be downloaded from the Renesas Electronics website.

8. Website and Support

Renesas Electronics website
http://www.renesas.com/

Inquiries
http://www.renesas.com/inquiry
Revision History

<table>
<thead>
<tr>
<th>Rev.</th>
<th>Date</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00</td>
<td>Oct. 30, 2009</td>
<td>— First edition issued</td>
</tr>
<tr>
<td>1.01</td>
<td>Apr. 28, 2011</td>
<td>— Add: M16C/63, M16C/64A, M16C/64C, M16C/65C, M16C/6C, M16C/5LD, M16C/56D, M16C/5L, M16C/56, M16C/5M, and M16C/57</td>
</tr>
</tbody>
</table>
General Precautions in the Handling of MPU/MCU Products

The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the products covered by this manual, refer to the relevant sections of the manual. If the descriptions under General Precautions in the Handling of MPU/MCU Products and in the body of the manual differ from each other, the description in the body of the manual takes precedence.

1. Handling of Unused Pins
 Handle unused pins in accord with the directions given under Handling of Unused Pins in the manual.
 - The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible. Unused pins should be handled as described under Handling of Unused Pins in the manual.

2. Processing at Power-on
 The state of the product is undefined at the moment when power is supplied.
 - The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the moment when power is supplied.
 In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the moment when power is supplied until the reset process is completed.
 In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the moment when power is supplied until the power reaches the level at which resetting has been specified.

3. Prohibition of Access to Reserved Addresses
 Access to reserved addresses is prohibited.
 - The reserved addresses are provided for the possible future expansion of functions. Do not access these addresses; the correct operation of LSI is not guaranteed if they are accessed.

4. Clock Signals
 After applying a reset, only release the reset line after the operating clock signal has become stable. When switching the clock signal during program execution, wait until the target clock signal has stabilized.
 - When the clock signal is generated with an external resonator (or from an external oscillator) during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Moreover, when switching to a clock signal produced with an external resonator (or by an external oscillator) while program execution is in progress, wait until the target clock signal is stable.

5. Differences between Products
 Before changing from one product to another, i.e. to one with a different part number, confirm that the change will not lead to problems.
 - The characteristics of MPU/MCU in the same group but having different part numbers may differ because of the differences in internal memory capacity and layout pattern. When changing to products of different part numbers, implement a system-evaluation test for each of the products.
Notice

1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.

4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use or distribute Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and “Specific”. The recommended applications for each Renesas Electronics product depend on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.

- “Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
- “High Quality”: Transportation equipment (automobiles, train, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically designed for its support.
- “Specific”: Aircraft; aerospace equipment; submarine repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantation, or healthcare intervention (e.g. excision, etc.) and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power-voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of reconfigurable computer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.

Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.