To our customers,

Old Company Name in Catalogs and Other Documents

On April 1\(^{st}\), 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1\(^{st}\), 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Notice

1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.

4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and “Specific”. The recommended applications for each Renesas Electronics product depend on the product’s quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.

 “Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 “High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically designed for life support.
 “Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.
M16C/65 Group
Delayed one-shot output

1. Abstract
The following are steps of outputting a pulse only once after a specified elapse since an external trigger is input.

Use the following peripheral function:

- One-shot timer mode of timer A

2. Introduction
This application note is applied to the M16C/65 group microcomputers.

This application note can be used with other M16C Family MCUs which have the same special function registers (SFRs) as the above group. Check the manual for any modifications to functions. Careful evaluation is recommended before using the program described in this application note.
3. Specification

After 1ms from the falling edge which inputs to TA0IN pin, TA1OUT pin will output "H" for 50us.

(1) Set timer A0 in one-shot timer mode, and set timer A1 in one-shot timer mode with pulse output function.

(2) Set TA0 register to make timer A0 underflow period as 1ms. Set TA1 register to make timer A1 generate a pulse with 50us "H" interval.

Set the underflow of timer A0 as the counting start condition of timer A1.

Both timer A0 and timer A1 use fTIMAB as the count source.

(3) Connect a 20MHz oscillator to XIN.

(4) Using POFS1 bit in TAPOFS register, select the output polarity of the TA1OUT pin.

4. Operation

(1) Setting the trigger select bit to “1” and setting the count start flag to “1” enables the counter of timer A0 to count.

(2) If an effective edge, selected by use of the external trigger select bit, is input to the TA0IN pin, the counter begins a down count. The counter of timer A0 performs a down count on count source fTIMAB.

(3) As soon as the counter of timer A0 becomes “0000h”, the counter reloads the content of the reload register and stops counting. At this time, the timer A0 interrupt request bit goes to “1”.

(4) An underflow in timer A0 triggers the counter of timer A1 and causes it to begin counting. When timer A1 begins counting, the output level of the TA1OUT pin goes to “H”.

(5) As soon as the counter of timer A1 becomes “0000h”, the output level of the TA1OUT pin goes to “L”, the counter reloads the content of the reload register, and stops counting. At this time, timer A1 interrupt request bit goes to “1”.
Figure 1 shows the operation timing.

Figure 1. Operation timing of delayed one-shot output

Figure 2 shows the connection diagram.

Figure 2. Connection diagram of delayed one-shot output
5. Set-up procedure

Table 1 shows Timer A count source, Figure 3 shows block diagram of Timer A count source in timer mode.

Table 1. Count Source Selection of Timer A

<table>
<thead>
<tr>
<th>TCDIV00</th>
<th>TACSj register (Note 2)</th>
<th>TAiMR register</th>
<th>Count source</th>
<th>Count source period</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCS3/ TCS7</td>
<td>TCS2/ TCS6</td>
<td>TCS1/ TCS5</td>
<td>TCS0/ TCS4</td>
<td>TCK1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Note 1: TCDIV00 bit is clock select prior to timer AB division bit. Set the TCDIV00 bit before setting other registers associated with timer A. After changing the TCDIV00 bit, set other registers associated with timer A again.

Note 2: TCS3~TCS0 bits of TACS0 register correspond to Timer A0 count source selection, TCS7~TCS4 bits of TACS0 register correspond to Timer A1 count source selection, TCS3~TCS0 bits of TACS1 register correspond to Timer A2 count source selection, TCS7~TCS4 bits of TACS1 register correspond to Timer A3 count source selection, and TCS3~TCS0 bits of TACS2 register correspond to Timer A4 count source selection.

Note 3: When the PCLK0 bit in the PCLKR register is “1”, the selected clock source is f1TIMAB. When the PCLK0 bit is “0”, the selected clock source is f2TIMAB.
Selecting a clock used prior to timer AB frequency dividing
(Set the TCDIV00 bit before setting other registers associated with timer A. After changing the TCDIV00 bit,
set other registers associated with timer A again.)

<table>
<thead>
<tr>
<th>000000</th>
<th>TCKDIV00</th>
</tr>
</thead>
<tbody>
<tr>
<td>000000</td>
<td>TCKDIV00</td>
</tr>
<tr>
<td>000000</td>
<td>TCKDIV00</td>
</tr>
</tbody>
</table>

Clock select prior to timer AB division bit
0 : f1
Reserved bits
Set to 0
No register bits. If necessary, set to 0. Read as undefined value.
Reserved bits
Set to 0

Figure 3. Count source of Timer A
Selecting timer count source

B7 B0

- **TA0 count source select bit (Note1)**
 - 000 : f1TIMAB or f2TIMAB (Note2)
 - 001 : f1TIMAB
 - 010 : f2TIMAB
 - 011 : f64TIMSB
 - 100 : fcco-f
 - 101 : fcco-s
 - 110 : fc32
 - 111 : Do not set

- **TA0 count source option specified bit (Note1)**
 - 0 : TCK0, TCK1 enabled, TCS0 to TCS2 disabled

B7 B6 B0

- **TA1 count source select bit (Note1)**
 - 000 : f1TIMAB or f2TIMAB (Note2)
 - 001 : f8TIMAB
 - 010 : f32TIMAB
 - 011 : f64TIMSB
 - 100 : fcco-f
 - 101 : fcco-s
 - 110 : fc32
 - 111 : Do not set

- **TA1 count source option specified bit (Note1)**
 - 0 : TCK0, TCK1 enabled, TCS4 to TCS6 disabled

Note 1: About the count source period, please refer to Table 1.

Note 2: When the PCLK0 bit in the PCLKR register is “1”, the selected clock source is f1TIMAB. When the PCLK0 bit is “0”, the selected clock source is f2TIMAB.

Setting timer A0

B7 B0

- **Timer A0 mode register [Address 0336h]**
 - **TA0MR**

- **Selection of one-shot timer mode**
 - 0 : Pulse is not output (TA0OUT pin is normal port pin)

- **Pulse output function select bit**
 - 0 : Falling edge of TA0IN pin’s input signal

- **External trigger select bit**
 - 1 : Selected by event/trigger select register

- **Trigger select bit**
 - 0 (Must always be “0” in one-shot timer mode)

- **Count source select bit (Note1)**
 - 00 : f1TIMAB or f2TIMAB (Note2)
 - 01 : f1TIMAB
 - 10 : f2TIMAB
 - 11 : fc32

Note 1: Valid when the TCS3 bit or TCS7 bit in registers TACS0 to TACS2 is set to 0 (TCK0, TCK1 enabled). About the count source period, please refer to Table 1.

Note 2: When the PCLK0 bit in the PCLKR register is “1”, the selected clock source is f1TIMAB. When the PCLK0 bit is “0”, the selected clock source is f2TIMAB.
Setting one-shot timer’s time

4Eh 20h

Timer A0 register [Address 0327h, 0326h]

TA0

Setting timer A1

Selecting one-shot timer mode and functions

0 0 0 1 1 0

Timer A1 mode register [Address 0337h]
TA1MR

Selection of one-shot timer mode

Pulse output function select bit

1 : Pulse is output (TA1OUT pin is pulse output pin)

External trigger select bit

Invalid when choosing timer’s overflow

Trigger select bit

1 : Selected by event/trigger select register
0 (Must always be “0” in one-shot timer mode)

Count source select bit (Note1)

b7 b6
0 0 : f1TIMAB or f2TIMAB (Note2)
0 1 : f3TIMAB
1 0 : f32TIMAB
1 1 : fC32

Note 1: Valid when the TCS3 bit or TCS7 bit in registers TACS0 to TACS2 is set to 0 (TCK0, TCK1 enabled). About the count source period, please refer to Table 1.

Note 2: When the PCLK0 bit in the PCLKR register is “1”, the selected clock source is f1TIMAB. When the PCLK0 bit is “0”, the selected clock source is f2TIMAB.

Setting event/trigger select bit

(Set timer A0 to trigger timer A1)

b7 0

Trigger select register [Address 0323h]
TRGSR

Timer A1 event/trigger select bit

1 0 : TA0 overflow or underflow is selected
Setting one-shot timer's time

<table>
<thead>
<tr>
<th>b7</th>
<th>b0</th>
</tr>
</thead>
<tbody>
<tr>
<td>03h</td>
<td>E8h</td>
</tr>
</tbody>
</table>

Timer A1 register [Address 0329h, 0328h]

Selecting waveform output function

- **Timer A waveform output function select register [Address 01D5h]**
 - TAPOFS
 - TA0out output polar control bit
 - 0: Output waveform “H” active
 - TA1out output polar control bit
 - 0: Output waveform “H” active
 - No register bits. If necessary, set to 0. Read as undefined value

Setting count start flag

<table>
<thead>
<tr>
<th>b7</th>
<th>b0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Count start flag [Address 0320h]

- Timer A0 count start flag
 - 1: Starts counting
- Timer A1 count start flag
 - 1: Starts counting

Start counting
6. Reference

Hardware manual
M16C/65 Group Hardware Manual
(Use the most recent version of the document on the Renesas Technology Web site.)

Technical news/Technical update
(Use the most recent version of the document on the Renesas Technology Web site.)

Web-site and contact for support
Renesas Technology Web site
http://www.renesas.com/

Inquiries
http://www.renesas.com/inquiry
csc@renesas.com
Revision

<table>
<thead>
<tr>
<th>Rev.</th>
<th>Issue date</th>
<th>Revised Page</th>
<th>Point</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00</td>
<td>2009.10</td>
<td>-</td>
<td>First edition issued</td>
</tr>
</tbody>
</table>

All trademarks and registered trademarks are the property of their respective owners.
Notes regarding these materials

1. This document is provided for reference purposes only so that Renesas customers may select the appropriate
Renesas products for their use. Renesas neither makes warranties or representations with respect to the
accuracy or completeness of the information contained in this document nor grants any license to any intellectual
property rights or any other rights of Renesas or any third party with respect to the information in this document.
2. Renesas shall have no liability for damages or infringement of any intellectual property or other rights arising out
of the use of any information in this document, including, but not limited to, product data, diagrams, charts,
programs, algorithms, and application circuit examples.
3. You should not use the products or the technology described in this document for the purpose of military
applications such as the development of weapons of mass destruction or for the purpose of any other military
use. When exporting the products or technology described herein, you should follow the applicable export
control laws and regulations, and procedures required by such laws and regulations.
4. All information included in this document such as product data, diagrams, charts, programs, algorithms, and
application circuit examples, is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas products listed in this document, please confirm the latest product information with a Renesas sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas such as that disclosed through our website. (http://www.renesas.com)
5. Renesas has used reasonable care in compiling the information included in this document, but Renesas
assumes no liability whatsoever for any damages incurred as a result of errors or omissions in the information
included in this document.
6. When using or otherwise relying on the information in this document, you should evaluate the information in light
of the total system before deciding about the applicability of such information to the intended application.
Renesas makes no representations, warranties or guarantees regarding the suitability of its products for any particular application and specifically disclaims any liability arising out of the application and use of the information in this document or Renesas products.
7. With the exception of products specified by Renesas as suitable for automobile applications, Renesas products
are not designed, manufactured or tested for applications or otherwise in systems the failure or malfunction of
which may cause a direct threat to human life or create a risk of human injury or which require especially high
quality and reliability such as safety systems, or equipment or systems for transportation and traffic, healthcare,
combustion control, aerospace and aeronautics, nuclear power, or undersea communication transmission. If you
are considering the use of our products for such purposes, please contact a Renesas sales office beforehand.
Renesas shall have no liability for damages arising out of the uses set forth above.
8. Notwithstanding the preceding paragraph, you should not use Renesas products for the purposes listed below:
 (1) artificial life support devices or systems
 (2) surgical implantations
 (3) healthcare intervention (e.g., excision, administration of medication, etc.)
 (4) any other purposes that pose a direct threat to human life
Renesas shall have no liability for damages arising out of the uses set forth in the above and purchasers who
elect to use Renesas products in any of the foregoing applications shall indemnify and hold harmless Renesas
Technology Corp., its affiliated companies and their directors, managers, and employees against any and all
damages arising out of such applications.
9. You should use the products described herein within the range specified by Renesas, especially with respect to the
maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas shall have no liability for malfunctions or
characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions.
Please be sure to implement safety measures to guard against the possibility of physical injury, and injury or
damage caused by fire in the event of the failure of a Renesas product, such as safety design for hardware and
software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment
for aging degradation or any other applicable measures. Among others, since the evaluation of microcomputer
software alone is very difficult, please evaluate the safety of the final products or system manufactured by you
10. Although Renesas endeavors to improve the quality and reliability of its products, IC products have specific
characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions.
Please be sure to implement safety measures to guard against the possibility of physical injury, and injury or
damage caused by fire in the event of the failure of a Renesas product, such as safety design for hardware and
software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment
for aging degradation or any other applicable measures. Among others, since the evaluation of microcomputer
software alone is very difficult, please evaluate the safety of the final products or system manufactured by you
11. In case Renesas products listed in this document are detached from the products to which the Renesas products
are attached or affixed, the risk of accident such as swallowing by infants and small children is very high. You
should implement safety measures so that Renesas products may not be easily detached from your products.
Renesas shall have no liability for damages arising out of such detachment.
12. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written
approval from Renesas.
13. Please contact a Renesas sales office if you have any questions regarding the information contained in this
document, Renesas semiconductor products, or if you have any other inquiries.

© 2009. Renesas Technology Corp., All rights reserved.