1. **Overview**

1.1 **Features**

The M16C/63 Group microcomputer (MCU) incorporates the M16C/60 Series CPU core and flash memory, employing sophisticated instructions for a high level of efficiency. This MCU has 1 MB of address space (expandable to 4 MB), and it is capable of executing instructions at high speed. In addition, the CPU core boasts a multiplier for high-speed operation processing.

This MCU consumes low power, and supports operating modes that allow additional power control. The MCU also uses an anti-noise configuration to reduce emissions of electromagnetic noise and is designed to withstand electromagnetic interference (EMI). By integrating many of the peripheral functions, including the multifunction timer and serial interface, the number of system components has been reduced.

1.1.1 **Applications**

This MCU can be used in audio components, cameras, televisions, household appliances, office equipment, communication devices, mobile devices, industrial equipment, and other applications.
1.2 Specifications

The M16C/63 Group includes 100-pin and 80-pin packages. Table 1.1 to Table 1.4 list specifications.

Table 1.1 Specifications for the 100-Pin Package (1/2)

<table>
<thead>
<tr>
<th>Item</th>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
</table>
| **CPU** | Central processing unit| M16C/60 Series core (multiplier: 16 bit × 16 bit → 32 bit, multiply and accumulate instruction: 16 bit × 16 bit + 32 bit → 32 bit)
• Number of basic instructions: 91
• Minimum instruction execution time:
 - 50.0 ns (f(BCLK) = 20 MHz, VCC1 = VCC2 = 2.7 to 5.5 V)
 - 100.0 ns (f(BCLK) = 10 MHz, VCC1 = VCC2 = 2.1 to below 2.7 V)
 - 200.0 ns (f(BCLK) = 5 MHz, VCC1 = VCC2 = 1.8 V)
• Operating modes: Single-chip, memory expansion, and microprocessor |
| **Memory** | ROM, RAM, data flash | See Table 1.5 “Product List”. |
| **Voltage Detection** | Voltage detector | • Power-on reset
• 3 voltage detection points (detection level of voltage detection 0 and 1 selectable) |
| **Clock** | Clock generator | • 4 circuits: Main clock, sub clock, low-speed on-chip oscillator (125 kHz), high-speed on-chip oscillator (40 MHz ±10%)
• Oscillation stop detection: Main clock oscillation stop/restart detection function
• Frequency divider circuit: Divide ratio selectable from 1, 2, 4, 8, and 16
• Sub clock frequency divider circuit: Divide ratio selectable from 1 and 2
• Power saving features: Wait mode, stop mode
• Real-time clock |
| **External Bus** | Bus memory expansion | • Address space: 1 MB
• External bus interface: 0 to 8 waits inserted, 4 chip select outputs, memory area expansion function (expandable to 4 MB), 3 V and 5 V interfaces
• Bus format: Separate bus or multiplexed bus selectable, data bus width selectable (8 or 16 bits), number of address buses selectable (12, 16, or 20) |
| **I/O Ports** | Programmable I/O ports | • CMOS I/O ports: 85 (selectable pull-up resistors)
• N-channel open drain ports: 3 |
| **Interrupts** | | • Interrupt vectors: 70
• External interrupt inputs: 17 (NMI, INTC × 8, key input × 8)
• Interrupt priority levels: 7 |
| **Watchdog Timer** | | 15-bit timer × 1 (with prescaler)
Automatic reset start function selectable |
| **DMA** | DMAC | • 4 channels, cycle steal mode
• Trigger sources: 43
• Transfer modes: 2 (single transfer, repeat transfer) |
Table 1.2 Specifications for the 100-Pin Package (2/2)

<table>
<thead>
<tr>
<th>Item</th>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Timers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Timer A</td>
<td>16-bit timer × 5</td>
<td>Timer mode, event counter mode, one-shot timer mode, pulse width modulation (PWM) mode</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Event counter two-phase pulse signal processing (two-phase encoder input) × 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Programmable output mode × 3</td>
</tr>
<tr>
<td>Timer B</td>
<td>16-bit timer × 6</td>
<td>Timer mode, event counter mode, pulse period measurement mode, pulse width measurement mode</td>
</tr>
<tr>
<td>Three-phase motor control</td>
<td></td>
<td>• Three-phase inverter control (timer A1, timer A2, timer A4, timer B2)</td>
</tr>
<tr>
<td>timer functions</td>
<td></td>
<td>• On-chip dead time timer</td>
</tr>
<tr>
<td>Real-time clock</td>
<td></td>
<td>• Count: seconds, minutes, hours, days of the week, months, years</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Periodic interrupt: 0.25 s, 0.5 s</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Automatic correction function</td>
</tr>
<tr>
<td>PWM function</td>
<td>8 bits × 2</td>
<td></td>
</tr>
<tr>
<td>Remote control signal</td>
<td></td>
<td>• 2 circuits</td>
</tr>
<tr>
<td>receiver</td>
<td></td>
<td>• 4 wave pattern matchings (differentiate wave pattern for headers, data</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0, data 1, and special data)</td>
</tr>
<tr>
<td>Serial Interface</td>
<td></td>
<td>• 6-byte receive buffer (1 circuit only)</td>
</tr>
<tr>
<td>UART0 to UART2, UART5 to</td>
<td>Clock synchronous/asynchronous × 6 channels</td>
<td></td>
</tr>
<tr>
<td>UART7</td>
<td></td>
<td>i2C-bus, IEBus, special mode 2</td>
</tr>
<tr>
<td>SI/O3, SI/O4</td>
<td>Clock synchronization only × 2 channels</td>
<td></td>
</tr>
<tr>
<td>Multi-master i2C-bus</td>
<td>1 channel</td>
<td></td>
</tr>
<tr>
<td>Interface</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CEC Functions</td>
<td>CEC transmit/receive, arbitration lost detection, ACK automatic output,</td>
<td>operation frequency of 32 kHz</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A/D Converter</td>
<td>10-bit resolution × 26 channels, including sample and hold function</td>
<td>Conversion time: 2.15 µs</td>
</tr>
<tr>
<td>D/A Converter</td>
<td>8-bit resolution × 2 circuits</td>
<td></td>
</tr>
<tr>
<td>CRC Calculator</td>
<td>CRC-CCITT (X^16 + X^12 + X^5 + 1),</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CRC-16 (X^16 + X^15 + X^2 + 1) compliant</td>
<td></td>
</tr>
<tr>
<td>Flash Memory</td>
<td>• Program and erase power supply voltage: 2.7 to 5.5 V</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Program and erase cycles: 1,000 times (program ROM 1, program ROM 2), 10,000 times (data flash)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Program security: ROM code protect, ID code check</td>
<td></td>
</tr>
<tr>
<td>Debug Functions</td>
<td>On-chip debug, on-board flash rewrite, address match interrupt × 4</td>
<td></td>
</tr>
<tr>
<td>Operation Frequency/Supply</td>
<td>5 MHz/VCC1 = 1.8 to 5.5 V, VCC2 = 1.8 V to VCC1</td>
<td></td>
</tr>
<tr>
<td>Voltage</td>
<td>10 MHz/VCC1 = 2.1 to 5.5 V, VCC2 = 2.1 V to VCC1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20 MHz/VCC1 = 2.7 to 5.5 V, VCC2 = 2.7 V to VCC1</td>
<td></td>
</tr>
<tr>
<td>Current Consumption</td>
<td>Described in Electrical Characteristics</td>
<td></td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>-20°C to 85°C, -40°C to 85°C (1)</td>
<td></td>
</tr>
<tr>
<td>Package</td>
<td>100-pin QFP: PRQP0100JD-B (Previous package code: 100P6F-A)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>100-pin LQFP: PLQP0100KB-A (Previous package code: 100P6Q-A)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>100-pin LGA: PTLG0100KA-A (Previous package code: 100F0M)</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1. See Table 1.5 “Product List” for the operating temperature.
2. The CEC function indicates circuitry which supports the transmission and reception of CEC signals standardized by the High-Definition Multimedia Interface (HDMI). HDMI and High-Definition Multimedia Interface are registered trademarks of HDMI Licensing, LLC.
Specifications for the 80-Pin Package (1/2)

<table>
<thead>
<tr>
<th>Item</th>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU</td>
<td>Central processing unit</td>
<td>M16C/60 Series core</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(multiplier: 16 bit × 16 bit → 32 bit, multiply and accumulate instruction: 16 bit × 16 bit + 32 bit → 32 bit)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Number of basic instructions: 91</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Minimum instruction execution time:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50.0 ns (f(BCLK) = 20 MHz, VCC1 = 2.7 to 5.5 V)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100.0 ns (f(BCLK) = 10 MHz, VCC1 = 2.1 to below 2.7 V)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>200.0 ns (f(BCLK) = 5 MHz, VCC1 = 1.8 V)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Operating mode: Single-chip</td>
</tr>
<tr>
<td>Memory</td>
<td>ROM, RAM, data flash</td>
<td>See Table 1.5 “Product List”.</td>
</tr>
<tr>
<td>Voltage</td>
<td>Voltage detector</td>
<td>• Power-on reset</td>
</tr>
<tr>
<td>Detection</td>
<td></td>
<td>• 3 voltage detection points (detection level of voltage detection 0 and 1 selectable)</td>
</tr>
<tr>
<td>Clock</td>
<td>Clock generator</td>
<td>• 4 circuits: Main clock, sub clock, low-speed on-chip oscillator (125 kHz), high-speed on-chip oscillator (40 MHz ±10%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Oscillation stop detection: Main clock oscillation stop/restart detection function</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Frequency divider circuit: Divide ratio selectable from 1, 2, 4, 8, and 16 Sub clock frequency divider circuit: Divide ratio selectable from 1 and 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Power saving features: Wait mode, stop mode</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Real-time clock</td>
</tr>
<tr>
<td>External Bus</td>
<td>Bus memory expansion</td>
<td>None</td>
</tr>
<tr>
<td>Expansion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I/O Ports</td>
<td>Programmable I/O ports</td>
<td>• CMOS I/O ports: 68 (selectable pull-up resistors)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• N-channel open drain ports: 3</td>
</tr>
<tr>
<td>Interrupts</td>
<td></td>
<td>• Interrupt vectors: 70</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• External interrupt inputs: 14 (NMI, INT × 5, key input × 8)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Interrupt priority levels: 7</td>
</tr>
<tr>
<td>Watchdog Timer</td>
<td></td>
<td>15-bit timer × 1 (with prescaler)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Automatic reset start function selectable</td>
</tr>
<tr>
<td>DMA</td>
<td>DMAC</td>
<td>• 4 channels, cycle steal mode</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Trigger sources: 43</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Transfer modes: 2 (single transfer, repeat transfer)</td>
</tr>
</tbody>
</table>
Table 1.4 Specifications for the 80-Pin Package (2/2)

<table>
<thead>
<tr>
<th>Item</th>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Timers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Timer A</td>
<td>16-bit timer × 5</td>
<td>Timer mode × 5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Event counter mode, one-shot timer mode, pulse width modulation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(PWM) mode × 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Event counter two-phase pulse signal processing (two-phase encoder input)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>× 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Programmable output mode × 1</td>
</tr>
<tr>
<td>Timer B</td>
<td>16-bit timer × 6</td>
<td>Timer mode × 6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Event counter mode, pulse period measurement mode, pulse width measurement</td>
</tr>
<tr>
<td></td>
<td></td>
<td>mode × 5</td>
</tr>
<tr>
<td>Three-phase motor control</td>
<td></td>
<td>None</td>
</tr>
<tr>
<td>timer functions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Real-time clock</td>
<td></td>
<td>• Count: seconds, minutes, hours, days of the week, months, years</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Periodic interrupt: 0.25 s, 0.5 s</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Automatic correction function</td>
</tr>
<tr>
<td>PWM function</td>
<td></td>
<td>8 bits × 2</td>
</tr>
<tr>
<td>Remote control signal</td>
<td></td>
<td>• 2 circuits</td>
</tr>
<tr>
<td>receiver</td>
<td></td>
<td>• 4 wave pattern matchings (differentiate wave pattern for headers, data 0,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>data 1, and special data)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 6-byte receive buffer (1 circuit only)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Operating frequency of 32 kHz</td>
</tr>
<tr>
<td>Serial Interface</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UART0 to UART2, UART5</td>
<td>Clock synchronous/asynchronous × 3 channels</td>
<td>i²C-bus, IEBus, special mode 2</td>
</tr>
<tr>
<td></td>
<td>Clock asynchronous × 1 channel</td>
<td>i²C-bus, IEBus, SIM</td>
</tr>
<tr>
<td>SI/O3, SI/O4</td>
<td>Clock synchronization only × 2 channels</td>
<td>(SI/O3 is used for transmission only)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(SI/O3 is used for transmission only)</td>
</tr>
<tr>
<td>Multi-master i²C-bus Interface</td>
<td>1 channel</td>
<td></td>
</tr>
<tr>
<td>CEC Functions (2)</td>
<td>CEC transmit/receive, arbitration lost detection, ACK automatic output, operation frequency of 32 kHz</td>
<td></td>
</tr>
<tr>
<td>A/D Converter</td>
<td>10-bit resolution × 26 channels, including sample and hold function</td>
<td>Conversion time: 2.15 µs</td>
</tr>
<tr>
<td>D/A Converter</td>
<td>8-bit resolution × 2 circuits</td>
<td></td>
</tr>
<tr>
<td>CRC Calculator</td>
<td>CRC-CCITT ((X^{16} + X^{12} + X^{5} + 1))</td>
<td>CRC-16 ((X^{16} + X^{15} + X^{2} + 1)) compliant</td>
</tr>
<tr>
<td>Flash Memory</td>
<td>• Program and erase power supply voltage: 2.7 to 5.5 V</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Program and erase cycles: 1,000 times (program ROM 1, program ROM 2), 10,000 times (data flash)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Program security: ROM code protect, ID code check</td>
<td></td>
</tr>
<tr>
<td>Debug Functions</td>
<td>On-chip debug, on-board flash rewrite, address match interrupt × 4</td>
<td></td>
</tr>
<tr>
<td>Operation Frequency/Supply Voltage</td>
<td>5 MHz/VCC1 = 1.8 to 5.5 V</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10 MHz/VCC1 = 2.1 to 5.5 V</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20 MHz/VCC1 = 2.7 to 5.5 V</td>
<td></td>
</tr>
<tr>
<td>Current Consumption</td>
<td>Described in Electrical Characteristics</td>
<td></td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>-20°C to 85°C, -40°C to 85°C (1)</td>
<td></td>
</tr>
<tr>
<td>Package</td>
<td>80-pin LQFP: PLQP0080KB-A (Previous package code: 80P6Q-A)</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1. See Table 1.5 “Product List” for the operating temperature.
2. The CEC function indicates circuitry which supports the transmission and reception of CEC signals standardized by the High-Definition Multimedia Interface (HDMI). HDMI and High-Definition Multimedia Interface are registered trademarks of HDMI Licensing, LLC.
1.3 Product List

Table 1.5 lists product information. Figure 1.1 shows the Part No., with Memory Size and Package, and Figure 1.2 and Figure 1.3 shows the Marking Diagram (Top View).

<table>
<thead>
<tr>
<th>Part No.</th>
<th>ROM Capacity</th>
<th>RAM Capacity</th>
<th>Package Code</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Program ROM 1</td>
<td>Program ROM 2</td>
<td>Data flash</td>
<td></td>
</tr>
<tr>
<td>R5F363A6NFA</td>
<td>128 KB</td>
<td>16 KB</td>
<td>4 KB x 2 blocks</td>
<td>PRQP0100JD-B</td>
</tr>
<tr>
<td>R5F363A6NFB</td>
<td></td>
<td></td>
<td></td>
<td>Operating temperature</td>
</tr>
<tr>
<td>R5F363A6NLG</td>
<td></td>
<td></td>
<td></td>
<td>-20°C to 85°C</td>
</tr>
<tr>
<td>R5F363B6NFE</td>
<td></td>
<td></td>
<td></td>
<td>PRQP0100JD-B</td>
</tr>
<tr>
<td>R5F363A6DFA</td>
<td></td>
<td></td>
<td></td>
<td>Operating temperature</td>
</tr>
<tr>
<td>R5F363A6DFB</td>
<td></td>
<td></td>
<td></td>
<td>-40°C to 85°C</td>
</tr>
<tr>
<td>R5F363B6DFE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R5F363AEENFA</td>
<td>256 KB</td>
<td>16 KB</td>
<td>4 KB x 2 blocks</td>
<td>PRQP0100JD-B</td>
</tr>
<tr>
<td>R5F363AEENFB</td>
<td></td>
<td></td>
<td></td>
<td>Operating temperature</td>
</tr>
<tr>
<td>R5F363AENLG</td>
<td></td>
<td></td>
<td></td>
<td>-20°C to 85°C</td>
</tr>
<tr>
<td>R5F363BENFE</td>
<td></td>
<td></td>
<td></td>
<td>PRQP0100JD-B</td>
</tr>
<tr>
<td>R5F363AEDFA</td>
<td></td>
<td></td>
<td></td>
<td>Operating temperature</td>
</tr>
<tr>
<td>R5F363BEDFB</td>
<td></td>
<td></td>
<td></td>
<td>-40°C to 85°C</td>
</tr>
<tr>
<td>R5F363BDEFE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R5F363AKNFA</td>
<td>384 KB</td>
<td>16 KB</td>
<td>4 KB x 2 blocks</td>
<td>PRQP0100JD-B</td>
</tr>
<tr>
<td>R5F363AKNFB</td>
<td></td>
<td></td>
<td></td>
<td>Operating temperature</td>
</tr>
<tr>
<td>R5F363AKNLG</td>
<td></td>
<td></td>
<td></td>
<td>-20°C to 85°C</td>
</tr>
<tr>
<td>R5F363AKDFA</td>
<td></td>
<td></td>
<td></td>
<td>PRQP0100JD-B</td>
</tr>
<tr>
<td>R5F363AKDFB</td>
<td></td>
<td></td>
<td></td>
<td>Operating temperature</td>
</tr>
<tr>
<td>R5F363AKDFE</td>
<td></td>
<td></td>
<td></td>
<td>-40°C to 85°C</td>
</tr>
<tr>
<td>R5F363AMNFA</td>
<td>512 KB</td>
<td>16 KB</td>
<td>4 KB x 2 blocks</td>
<td>PRQP0100JD-B</td>
</tr>
<tr>
<td>R5F363AMNFB</td>
<td></td>
<td></td>
<td></td>
<td>Operating temperature</td>
</tr>
<tr>
<td>R5F363AMNLG</td>
<td></td>
<td></td>
<td></td>
<td>-20°C to 85°C</td>
</tr>
<tr>
<td>R5F363AMDFA</td>
<td></td>
<td></td>
<td></td>
<td>PRQP0100JD-B</td>
</tr>
<tr>
<td>R5F363AMDFB</td>
<td></td>
<td></td>
<td></td>
<td>Operating temperature</td>
</tr>
<tr>
<td>R5F363AMDFB</td>
<td></td>
<td></td>
<td></td>
<td>-40°C to 85°C</td>
</tr>
</tbody>
</table>

(D): Under development
(P): Planning

Previous package codes are as follows:
- PRQP0100JD-B: 100P6F-A
- PLQP0100KB-A: 100P6Q-A
- PTLG0100KA-A: 100F0M
- PLQP0080KB-A: 80P6Q-A
M16C/63 Group 1. Overview

Figure 1.1 Part No., with Memory Size and Package

PRQP0100JD-B (100P6F-A), PLQP0100KB-A (100P6Q-A), PLQP0080KB-A (80P6Q-A)

PTLG0100KA-A (100F0M)

Figure 1.2 Marking Diagram (Top View) (1/2)

Figure 1.3 Marking Diagram (Top View) (2/2)
1.4 Block Diagram

Figure 1.4 and Figure 1.5 show block diagrams.

Figure 1.4 Block Diagram for the 100-Pin Package

Notes:
1. ROM size depends on MCU type.
2. RAM size depends on MCU type.
M16C/60 Series CPU core

- Timer (16 bit)
 - Outputs (timer A): 5
 - Inputs (timer B): 6
- Real-time clock
- PWM function (8 bit x 2)
- Remote control signal receiver (2 circuits)
- Watchdog timer (15 bit)
- A/D converter (10-bit resolution x 26 channels)
- D/A converter (8-bit resolution x 2 circuits)

Memory

- ROM (1)
- RAM (2)

Multi-master I2C-bus interface (1 channel)

CEC function

Note:
1. ROM size depends on MCU type.
2. RAM size depends on MCU type.

Figure 1.5 Block Diagram for the 80-Pin Package
1.5 Pin Assignments

Figure 1.6 to Figure 1.9 show pin assignments. Table 1.6 to Table 1.9 list pin names.

Figure 1.6 Pin Assignment for the 100-Pin Package

Notes:
1. N-channel open drain output.
2. Check the position of Pin 1 by referring to appendix 1, Package Dimensions.
3. Pin names in brackets [] represent a single functional signal. They should not be considered as two separate functional signals.

Figure 1.6 Pin Assignment for the 100-Pin Package
M16C/63 Group

PLQP0100KB-A
(100P6Q-A)
(Top view)

Notes:
1. N-channel open drain output.
2. Check the position of Pin 1 by referring to appendix 1, Package Dimensions.
3. Pin names in brackets [] represent a single functional signal.
 They should not be considered as two separate functional signals.

See Note 3

Figure 1.7 Pin Assignment for the 100-Pin Package
M16C/63 Group

Figure 1.8 Pin Assignment for the 100-Pin Package

![Diagram of pin assignment](image)

Notes:
1. N-channel open drain output.
2. Check the position of Pin A1 by referring to appendix 1, Package Dimensions.
Table 1.6 Pin Names for the 100-Pin Package (1/2)

<table>
<thead>
<tr>
<th>Pin No.</th>
<th>FA</th>
<th>FB</th>
<th>LG</th>
<th>Control Pin</th>
<th>Port</th>
<th>I/O Pin for Peripheral Function</th>
<th>Bus Control Pin</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>99</td>
<td>B2</td>
<td>P9_6</td>
<td>P9_6</td>
<td>Interrupt</td>
<td>SOUT4</td>
<td>ANEX1</td>
</tr>
<tr>
<td>2</td>
<td>100</td>
<td>A2</td>
<td>P9_5</td>
<td>P9_5</td>
<td>Timer</td>
<td>CLK4</td>
<td>ANEX0</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>A1</td>
<td>P9_4</td>
<td>P9_4</td>
<td>Serial interface</td>
<td>TB4IN/PWM1</td>
<td>DA1</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>E4</td>
<td>P9_3</td>
<td>P9_3</td>
<td>A/D converter, D/A converter</td>
<td>TB3IN/PWM0</td>
<td>DA0</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>B1</td>
<td>P9_2</td>
<td>P9_2</td>
<td></td>
<td>TB2IN/PMC0</td>
<td>SOUT3</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>D3</td>
<td>P9_1</td>
<td>P9_1</td>
<td></td>
<td>TB1IN/PMC1</td>
<td>SIN3</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>C2</td>
<td>P9_0</td>
<td>P9_0</td>
<td></td>
<td>TB0IN</td>
<td>CLK3</td>
</tr>
<tr>
<td>8</td>
<td>6</td>
<td>C1</td>
<td>BYTE</td>
<td>BYTE</td>
<td>BYTE</td>
<td>BYTE</td>
<td>BYTE</td>
</tr>
<tr>
<td>9</td>
<td>7</td>
<td>D2</td>
<td>CNVSS</td>
<td>CNVSS</td>
<td>CNVSS</td>
<td>CNVSS</td>
<td>CNVSS</td>
</tr>
<tr>
<td>10</td>
<td>8</td>
<td>D1</td>
<td>XCN</td>
<td>XCN</td>
<td>XCN</td>
<td>XCN</td>
<td>XCN</td>
</tr>
<tr>
<td>11</td>
<td>9</td>
<td>E3</td>
<td>XCOUT</td>
<td>XCOUT</td>
<td>XCOUT</td>
<td>XCOUT</td>
<td>XCOUT</td>
</tr>
<tr>
<td>12</td>
<td>10</td>
<td>E2</td>
<td>RESET</td>
<td>RESET</td>
<td>RESET</td>
<td>RESET</td>
<td>RESET</td>
</tr>
<tr>
<td>13</td>
<td>11</td>
<td>E1</td>
<td>XOUT</td>
<td>XOUT</td>
<td>XOUT</td>
<td>XOUT</td>
<td>XOUT</td>
</tr>
<tr>
<td>14</td>
<td>12</td>
<td>F3</td>
<td>VSS</td>
<td>VSS</td>
<td>VSS</td>
<td>VSS</td>
<td>VSS</td>
</tr>
<tr>
<td>15</td>
<td>13</td>
<td>F2</td>
<td>XIN</td>
<td>XIN</td>
<td>XIN</td>
<td>XIN</td>
<td>XIN</td>
</tr>
<tr>
<td>16</td>
<td>14</td>
<td>F1</td>
<td>VCC1</td>
<td>VCC1</td>
<td>VCC1</td>
<td>VCC1</td>
<td>VCC1</td>
</tr>
<tr>
<td>17</td>
<td>15</td>
<td>G2</td>
<td>P8_5</td>
<td>P8_5</td>
<td>NMI</td>
<td>SD</td>
<td>CEC</td>
</tr>
<tr>
<td>18</td>
<td>16</td>
<td>F5</td>
<td>P8_4</td>
<td>P8_4</td>
<td>INT2</td>
<td>ZP</td>
<td>INT</td>
</tr>
<tr>
<td>19</td>
<td>17</td>
<td>G3</td>
<td>P8_3</td>
<td>P8_3</td>
<td>INT1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>18</td>
<td>G1</td>
<td>P8_2</td>
<td>P8_2</td>
<td>INT0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>19</td>
<td>F4</td>
<td>P8_1</td>
<td>P8_1</td>
<td>TA4IN/U</td>
<td>CTS5/RTS5</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>20</td>
<td>H1</td>
<td>P8_0</td>
<td>P8_0</td>
<td>TA4OUT/U</td>
<td>RXD5/SCL5</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>21</td>
<td>H2</td>
<td>P7_7</td>
<td>P7_7</td>
<td>TA3IN</td>
<td>CLK5</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>22</td>
<td>G4</td>
<td>P7_6</td>
<td>P7_6</td>
<td>TA3OUT</td>
<td>TXD5/SDA5</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>23</td>
<td>H3</td>
<td>P7_5</td>
<td>P7_5</td>
<td>TA2IN/W</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>24</td>
<td>J1</td>
<td>P7_4</td>
<td>P7_4</td>
<td>TA2OUT/W</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>25</td>
<td>J2</td>
<td>P7_3</td>
<td>P7_3</td>
<td>TA1IN/V</td>
<td>CTS2/RTS2</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>26</td>
<td>K1</td>
<td>P7_2</td>
<td>P7_2</td>
<td>TA1OUT/V</td>
<td>CLK2</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>27</td>
<td>K2</td>
<td>P7_1</td>
<td>P7_1</td>
<td>TA0IN/TB5IN</td>
<td>RXD2/SCL2/SCLMM</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>28</td>
<td>J3</td>
<td>P7_0</td>
<td>P7_0</td>
<td>TA0OUT</td>
<td>TXD2/SDA2/SDAMM</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>29</td>
<td>H4</td>
<td>P6_7</td>
<td>P6_7</td>
<td>TXD1/SDA1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>30</td>
<td>K3</td>
<td>P6_6</td>
<td>P6_6</td>
<td>RXD1/SCL1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>31</td>
<td>G5</td>
<td>P6_5</td>
<td>P6_5</td>
<td>CLK1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>32</td>
<td>J4</td>
<td>P6_4</td>
<td>P6_4</td>
<td>CTS1/RTS1/CTS0/CLKS1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>33</td>
<td>K4</td>
<td>P6_3</td>
<td>P6_3</td>
<td>TXD0/SDA0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>34</td>
<td>H5</td>
<td>P6_2</td>
<td>P6_2</td>
<td>RXD0/SCL0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>35</td>
<td>J5</td>
<td>P6_1</td>
<td>P6_1</td>
<td>CLK0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>36</td>
<td>K5</td>
<td>P6_0</td>
<td>P6_0</td>
<td>TRHO</td>
<td>CTS0/RTS0</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>37</td>
<td>G6</td>
<td>CLKOUT</td>
<td>CLKOUT</td>
<td>CLKOUT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>38</td>
<td>H6</td>
<td>P5_6</td>
<td>P5_6</td>
<td>RDY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>39</td>
<td>J6</td>
<td>P5_5</td>
<td>P5_5</td>
<td>ALE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>40</td>
<td>K6</td>
<td>P5_4</td>
<td>P5_4</td>
<td>HOLD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>41</td>
<td>H7</td>
<td>P5_3</td>
<td>P5_3</td>
<td>HLD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>42</td>
<td>J7</td>
<td>P5_2</td>
<td>P5_2</td>
<td>BCLK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>43</td>
<td>K7</td>
<td>P5_1</td>
<td>P5_1</td>
<td>RD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>44</td>
<td>K8</td>
<td>P5_0</td>
<td>P5_0</td>
<td>WRH/BHE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>45</td>
<td>G7</td>
<td>P4_7</td>
<td>P4_7</td>
<td>PWM1</td>
<td>TXD7/SDA7</td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>46</td>
<td>J8</td>
<td>P4_6</td>
<td>P4_6</td>
<td>PWM0</td>
<td>RXD7/SCL7</td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>47</td>
<td>H8</td>
<td>P4_5</td>
<td>P4_5</td>
<td>CLK7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>48</td>
<td>G8</td>
<td>P4_4</td>
<td>P4_4</td>
<td>CTS7/RTS7</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

R01DS0033EJ0220 Rev.2.20 Nov 01, 2012
Table 1.7 Pin Names for the 100-Pin Package (2/2)

<table>
<thead>
<tr>
<th>Pin No.</th>
<th>Control Pin</th>
<th>Port</th>
<th>I/O Pin for Peripheral Function</th>
<th>A/D converter, D/A converter</th>
<th>Bus Control Pin</th>
</tr>
</thead>
<tbody>
<tr>
<td>51</td>
<td>49</td>
<td>K9</td>
<td>P4_3</td>
<td></td>
<td>A19</td>
</tr>
<tr>
<td>52</td>
<td>50</td>
<td>K10</td>
<td>P4_2</td>
<td></td>
<td>A18</td>
</tr>
<tr>
<td>53</td>
<td>51</td>
<td>J10</td>
<td>P4_1</td>
<td></td>
<td>A17</td>
</tr>
<tr>
<td>54</td>
<td>52</td>
<td>J9</td>
<td>P4_0</td>
<td></td>
<td>A16</td>
</tr>
<tr>
<td>55</td>
<td>53</td>
<td>H9</td>
<td>P3_7</td>
<td></td>
<td>A15</td>
</tr>
<tr>
<td>56</td>
<td>54</td>
<td>H10</td>
<td>P3_6</td>
<td></td>
<td>A14</td>
</tr>
<tr>
<td>57</td>
<td>55</td>
<td>F6</td>
<td>P3_5</td>
<td></td>
<td>A13</td>
</tr>
<tr>
<td>58</td>
<td>56</td>
<td>F7</td>
<td>P3_4</td>
<td></td>
<td>A12</td>
</tr>
<tr>
<td>59</td>
<td>57</td>
<td>G9</td>
<td>P3_3</td>
<td></td>
<td>A11</td>
</tr>
<tr>
<td>60</td>
<td>58</td>
<td>G10</td>
<td>P3_2</td>
<td></td>
<td>A10</td>
</tr>
<tr>
<td>61</td>
<td>59</td>
<td>F8</td>
<td>P3_1</td>
<td></td>
<td>A9</td>
</tr>
<tr>
<td>62</td>
<td>60</td>
<td>F9</td>
<td>VCC2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>63</td>
<td>61</td>
<td>F10</td>
<td>P3_0</td>
<td>A8, [A8/D7]</td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>62</td>
<td>E8</td>
<td>VSS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>63</td>
<td>E9</td>
<td>P2_7</td>
<td>AN2_7</td>
<td>A7, [A7/D7], [A7/D6]</td>
</tr>
<tr>
<td>66</td>
<td>64</td>
<td>E10</td>
<td>P2_6</td>
<td>AN2_6</td>
<td>A6, [A6/D6], [A6/D5]</td>
</tr>
<tr>
<td>67</td>
<td>65</td>
<td>E7</td>
<td>P2_5</td>
<td>INT7</td>
<td>A5, [A5/D5], [A5/D4]</td>
</tr>
<tr>
<td>68</td>
<td>66</td>
<td>D7</td>
<td>P2_4</td>
<td>INT6</td>
<td>A4, [A4/D4], [A4/D3]</td>
</tr>
<tr>
<td>70</td>
<td>68</td>
<td>D10</td>
<td>P2_2</td>
<td>AN2_2</td>
<td>A2, [A2/D2], [A2/D1]</td>
</tr>
<tr>
<td>71</td>
<td>69</td>
<td>D9</td>
<td>P2_1</td>
<td>AN2_1</td>
<td>A1, [A1/D1], [A1/D0]</td>
</tr>
<tr>
<td>72</td>
<td>70</td>
<td>C10</td>
<td>P2_0</td>
<td>AN2_0</td>
<td>A0, [A0/D0], [A0/D1]</td>
</tr>
<tr>
<td>73</td>
<td>71</td>
<td>C9</td>
<td>P1_7</td>
<td>INT5</td>
<td>D15</td>
</tr>
<tr>
<td>74</td>
<td>72</td>
<td>E6</td>
<td>P1_6</td>
<td>INT4</td>
<td>D14</td>
</tr>
<tr>
<td>75</td>
<td>73</td>
<td>B9</td>
<td>P1_5</td>
<td>INT3</td>
<td>D13</td>
</tr>
<tr>
<td>76</td>
<td>74</td>
<td>B10</td>
<td>P1_4</td>
<td>IDW</td>
<td>D12</td>
</tr>
<tr>
<td>77</td>
<td>75</td>
<td>A10</td>
<td>P1_3</td>
<td>TXD6/SDA6</td>
<td>D11</td>
</tr>
<tr>
<td>78</td>
<td>76</td>
<td>A9</td>
<td>P1_2</td>
<td>RXD6/SCL6</td>
<td>D10</td>
</tr>
<tr>
<td>79</td>
<td>77</td>
<td>C8</td>
<td>P1_1</td>
<td>CLK6</td>
<td>D9</td>
</tr>
<tr>
<td>80</td>
<td>78</td>
<td>C7</td>
<td>P1_0</td>
<td>CTS6/RTS6</td>
<td>D8</td>
</tr>
<tr>
<td>81</td>
<td>79</td>
<td>A8</td>
<td>P0_7</td>
<td>AN0_7</td>
<td>D7</td>
</tr>
<tr>
<td>82</td>
<td>80</td>
<td>B8</td>
<td>P0_6</td>
<td>AN0_6</td>
<td>D6</td>
</tr>
<tr>
<td>83</td>
<td>81</td>
<td>D6</td>
<td>P0_5</td>
<td>AN0_5</td>
<td>D5</td>
</tr>
<tr>
<td>84</td>
<td>82</td>
<td>B7</td>
<td>P0_4</td>
<td>AN0_4</td>
<td>D4</td>
</tr>
<tr>
<td>85</td>
<td>83</td>
<td>A7</td>
<td>P0_3</td>
<td>AN0_3</td>
<td>D3</td>
</tr>
<tr>
<td>86</td>
<td>84</td>
<td>B6</td>
<td>P0_2</td>
<td>AN0_2</td>
<td>D2</td>
</tr>
<tr>
<td>87</td>
<td>85</td>
<td>C6</td>
<td>P0_1</td>
<td>AN0_1</td>
<td>D1</td>
</tr>
<tr>
<td>88</td>
<td>86</td>
<td>E5</td>
<td>P0_0</td>
<td>AN0_0</td>
<td>D0</td>
</tr>
<tr>
<td>89</td>
<td>87</td>
<td>D5</td>
<td>P10_7</td>
<td>KI3</td>
<td>AN7</td>
</tr>
<tr>
<td>90</td>
<td>88</td>
<td>A6</td>
<td>P10_6</td>
<td>KI2</td>
<td>AN6</td>
</tr>
<tr>
<td>91</td>
<td>89</td>
<td>B5</td>
<td>P10_5</td>
<td>KI1</td>
<td>AN5</td>
</tr>
<tr>
<td>92</td>
<td>90</td>
<td>A5</td>
<td>P10_4</td>
<td>KI0</td>
<td>AN4</td>
</tr>
<tr>
<td>93</td>
<td>91</td>
<td>C5</td>
<td>P10_3</td>
<td>KI7</td>
<td>AN3</td>
</tr>
<tr>
<td>94</td>
<td>92</td>
<td>B4</td>
<td>P10_2</td>
<td>KI6</td>
<td>AN2</td>
</tr>
<tr>
<td>95</td>
<td>93</td>
<td>A4</td>
<td>P10_1</td>
<td>KI5</td>
<td>AN1</td>
</tr>
<tr>
<td>96</td>
<td>94</td>
<td>C4</td>
<td>AVSS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>97</td>
<td>95</td>
<td>D4</td>
<td>P10_0</td>
<td>KI4</td>
<td>AN0</td>
</tr>
<tr>
<td>98</td>
<td>96</td>
<td>A3</td>
<td>VREF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>99</td>
<td>97</td>
<td>B3</td>
<td>AVCC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>98</td>
<td>C3</td>
<td>P9_7</td>
<td>SIN4</td>
<td>ADTRG</td>
</tr>
</tbody>
</table>
Figure 1.9 Pin Assignment for the 80-Pin Package

Notes:
1. N-channel open drain output.
2. Check the position of Pin 1 by referring to appendix 1, Package Dimensions.
Table 1.8 Pin Names for the 80-Pin Package (1/2)

<table>
<thead>
<tr>
<th>Pin No.</th>
<th>Control Pin</th>
<th>Port</th>
<th>I/O Pin for Peripheral Function</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Interrupt</td>
</tr>
<tr>
<td>1</td>
<td>P9_5</td>
<td></td>
<td>CLK4</td>
</tr>
<tr>
<td>2</td>
<td>P9_4</td>
<td></td>
<td>TB4IN/PWM1</td>
</tr>
<tr>
<td>3</td>
<td>P9_3</td>
<td></td>
<td>TB3IN/PWM0</td>
</tr>
<tr>
<td>4</td>
<td>P9_2</td>
<td></td>
<td>TB2IN/PMC0</td>
</tr>
<tr>
<td>5</td>
<td>P9_0</td>
<td></td>
<td>TB0IN</td>
</tr>
<tr>
<td>6</td>
<td>CNVSS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>XCI N</td>
<td>P8_7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>XCO U T</td>
<td>P8_6</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>RESET</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>XOUT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>VSS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>XIN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>VCC1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>P8_5</td>
<td></td>
<td>NMI</td>
</tr>
<tr>
<td>15</td>
<td>P8_4</td>
<td></td>
<td>INT2</td>
</tr>
<tr>
<td>16</td>
<td>P8_3</td>
<td></td>
<td>INT1</td>
</tr>
<tr>
<td>17</td>
<td>P8_2</td>
<td></td>
<td>INT0</td>
</tr>
<tr>
<td>18</td>
<td>P8_1</td>
<td></td>
<td>TA4IN</td>
</tr>
<tr>
<td>19</td>
<td>P8_0</td>
<td></td>
<td>TA4OUT</td>
</tr>
<tr>
<td>20</td>
<td>P7_7</td>
<td></td>
<td>TA3IN</td>
</tr>
<tr>
<td>21</td>
<td>P7_6</td>
<td></td>
<td>TA3OUT</td>
</tr>
<tr>
<td>22</td>
<td>P7_1</td>
<td></td>
<td>TA0IN/TB5IN</td>
</tr>
<tr>
<td>23</td>
<td>P7_0</td>
<td></td>
<td>TA0OUT</td>
</tr>
<tr>
<td>24</td>
<td>P6_7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>P6_6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>P6_5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>P6_4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>P6_3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>P6_2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>P6_1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>P6_0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>CLKOUT</td>
<td>P5_7</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>P5_6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>P5_5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>P5_4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>P5_3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>P5_2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>P5_1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>P5_0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>P4_3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 1.9 Pin Names for the 80-Pin Package (2/2)

<table>
<thead>
<tr>
<th>Pin No.</th>
<th>Control Pin</th>
<th>Port</th>
<th>I/O Pin for Peripheral Function</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Interrupt</td>
</tr>
<tr>
<td>41</td>
<td>P4_2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>P4_1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>P4_0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>P3_7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>P3_6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>P3_5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>P3_4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>P3_3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>P3_2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>P3_1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>P3_0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>P2_7</td>
<td></td>
<td>AN2_7</td>
</tr>
<tr>
<td>53</td>
<td>P2_6</td>
<td></td>
<td>AN2_6</td>
</tr>
<tr>
<td>54</td>
<td>P2_5</td>
<td>INT7</td>
<td>AN2_5</td>
</tr>
<tr>
<td>55</td>
<td>P2_4</td>
<td>INT6</td>
<td>AN2_4</td>
</tr>
<tr>
<td>56</td>
<td>P2_3</td>
<td></td>
<td>AN2_3</td>
</tr>
<tr>
<td>57</td>
<td>P2_2</td>
<td></td>
<td>AN2_2</td>
</tr>
<tr>
<td>58</td>
<td>P2_1</td>
<td></td>
<td>AN2_1</td>
</tr>
<tr>
<td>59</td>
<td>P2_0</td>
<td></td>
<td>AN2_0</td>
</tr>
<tr>
<td>60</td>
<td>P0_7</td>
<td></td>
<td>AN0_7</td>
</tr>
<tr>
<td>61</td>
<td>P0_6</td>
<td></td>
<td>AN0_6</td>
</tr>
<tr>
<td>62</td>
<td>P0_5</td>
<td></td>
<td>AN0_5</td>
</tr>
<tr>
<td>63</td>
<td>P0_4</td>
<td></td>
<td>AN0_4</td>
</tr>
<tr>
<td>64</td>
<td>P0_3</td>
<td></td>
<td>AN0_3</td>
</tr>
<tr>
<td>65</td>
<td>P0_2</td>
<td></td>
<td>AN0_2</td>
</tr>
<tr>
<td>66</td>
<td>P0_1</td>
<td></td>
<td>AN0_1</td>
</tr>
<tr>
<td>67</td>
<td>P0_0</td>
<td></td>
<td>AN0_0</td>
</tr>
<tr>
<td>68</td>
<td>P10_7</td>
<td></td>
<td>KI3</td>
</tr>
<tr>
<td>69</td>
<td>P10_6</td>
<td></td>
<td>KI2</td>
</tr>
<tr>
<td>70</td>
<td>P10_5</td>
<td></td>
<td>KI1</td>
</tr>
<tr>
<td>71</td>
<td>P10_4</td>
<td></td>
<td>KI0</td>
</tr>
<tr>
<td>72</td>
<td>P10_3</td>
<td></td>
<td>KI7</td>
</tr>
<tr>
<td>73</td>
<td>P10_2</td>
<td></td>
<td>KI6</td>
</tr>
<tr>
<td>74</td>
<td>P10_1</td>
<td></td>
<td>KI5</td>
</tr>
<tr>
<td>75</td>
<td>AVSS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>76</td>
<td>P10_0</td>
<td></td>
<td>KI4</td>
</tr>
<tr>
<td>77</td>
<td>VREF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>78</td>
<td>AVCC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>79</td>
<td>P9_7</td>
<td></td>
<td>SIN4</td>
</tr>
<tr>
<td>80</td>
<td>P9_6</td>
<td></td>
<td>SOUT4</td>
</tr>
</tbody>
</table>
1.6 Pin Functions

Table 1.10 Pin Functions for the 100-Pin Package (1/3)

<table>
<thead>
<tr>
<th>Signal Name</th>
<th>Pin Name</th>
<th>I/O</th>
<th>Power Supply</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power supply input</td>
<td>VCC1, VCC2, VSS</td>
<td>I</td>
<td>-</td>
<td>Apply 1.8 to 5.5 V to pins VCC1 and VCC2 (VCC1 ≥ VCC2) and 0 V to the VSS pin.</td>
</tr>
<tr>
<td>Analog power supply input</td>
<td>AVCC, AVSS</td>
<td>I</td>
<td>VCC1</td>
<td>This is the power supply for the A/D and D/A converters. Connect the AVCC pin to VCC1, and connect the AVSS pin to VSS.</td>
</tr>
<tr>
<td>Reset input</td>
<td>RESET</td>
<td>I</td>
<td>VCC1</td>
<td>Driving this pin low resets the MCU.</td>
</tr>
<tr>
<td>CNVSS</td>
<td>CNVSS</td>
<td>I</td>
<td>VCC1</td>
<td>Input pin to switch processor modes. After a reset, to start operating in single-chip mode, connect the CNVSS pin to VSS via a resistor. To start operating in microprocessor mode, connect the pin to VCC1.</td>
</tr>
<tr>
<td>External data bus width select input</td>
<td>BYTE</td>
<td>I</td>
<td>VCC1</td>
<td>Input pin to select the data bus of the external area. The data bus is 16 bits when it is low, and 8 bits when it is high. This pin must be fixed either high or low. Connect the BYTE pin to VSS in single-chip mode.</td>
</tr>
<tr>
<td>D0 to D7</td>
<td>I/O</td>
<td>VCC2</td>
<td></td>
<td>Inputs or outputs data (D0 to D7) while accessing an external area with a separate bus.</td>
</tr>
<tr>
<td>D8 to D15</td>
<td>I/O</td>
<td>VCC2</td>
<td></td>
<td>Inputs or outputs data (D8 to D15) while accessing an external area with a 16-bit separate bus.</td>
</tr>
<tr>
<td>A0 to A19</td>
<td>O</td>
<td>VCC2</td>
<td></td>
<td>Outputs address bits A0 to A19.</td>
</tr>
<tr>
<td>A0/D0 to A7/D7</td>
<td>I/O</td>
<td>VCC2</td>
<td></td>
<td>Inputs or outputs data (D0 to D7) and outputs address bits (A0 to A7) by timesharing, while accessing an external area with an 8-bit multiplexed bus.</td>
</tr>
<tr>
<td>A1/D0 to A8/D7</td>
<td>I/O</td>
<td>VCC2</td>
<td></td>
<td>Inputs or outputs data (D0 to D7) and outputs address bits (A1 to A8) by timesharing, while accessing an external area with a 16-bit multiplexed bus.</td>
</tr>
<tr>
<td>CS0 to CS3</td>
<td>O</td>
<td>VCC2</td>
<td></td>
<td>Outputs chip-select signals CS0 to CS3 to specify an external area.</td>
</tr>
<tr>
<td>Bus control pins</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WRL/WR</td>
<td>O</td>
<td>VCC2</td>
<td></td>
<td>Outputs WRL, WRH, (WR, BHE), and RD signals. WRL and WRH can be switched with BHE and WR.</td>
</tr>
<tr>
<td>WRH/BHE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RD</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALE</td>
<td>O</td>
<td>VCC2</td>
<td></td>
<td>Outputs an ALE signal to latch the address.</td>
</tr>
<tr>
<td>HOLD</td>
<td>I</td>
<td>VCC2</td>
<td></td>
<td>HOLD input is unavailable. Connect the HOLD pin to VCC2 via a resistor (pull-up).</td>
</tr>
<tr>
<td>HLDA</td>
<td>O</td>
<td>VCC2</td>
<td></td>
<td>In a hold state, HLDA outputs a low-level signal.</td>
</tr>
<tr>
<td>RDY</td>
<td>I</td>
<td>VCC2</td>
<td></td>
<td>The MCU bus is placed in a wait state while the RDY pin is driven low.</td>
</tr>
</tbody>
</table>

Power supply: VCC2 is used to supply power to the external bus associated pins. The dual power supply configuration allows VCC2 to interface at a different voltage than VCC1.
<table>
<thead>
<tr>
<th>Signal Name</th>
<th>Pin Name</th>
<th>I/O</th>
<th>Power Supply</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main clock input</td>
<td>XIN</td>
<td>I</td>
<td>VCC1</td>
<td>I/O for the main clock oscillator. Connect a ceramic resonator or crystal between pins XIN and XOUT. (1) Input an external clock to XIN pin and leave XOUT pin open.</td>
</tr>
<tr>
<td>Main clock output</td>
<td>XOUT</td>
<td>O</td>
<td>VCC1</td>
<td>I/O for a sub clock oscillator. Connect a crystal between XCIN pin and XCOUT pin. (1) Input an external clock to XCIN pin and leave XCOUT pin open.</td>
</tr>
<tr>
<td>Sub clock input</td>
<td>XCIN</td>
<td>I</td>
<td>VCC1</td>
<td>I/O for a sub clock oscillator. Connect a crystal between XCIN pin and XCOUT pin. (1) Input an external clock to XCIN pin and leave XCOUT pin open.</td>
</tr>
<tr>
<td>Sub clock output</td>
<td>XCOUT</td>
<td>O</td>
<td>VCC1</td>
<td>Outputs the BCLK signal.</td>
</tr>
<tr>
<td>BCLK output</td>
<td>BCLK</td>
<td>O</td>
<td>VCC2</td>
<td>Outputs a clock with the same frequency as fC, f1, f8, or f32.</td>
</tr>
<tr>
<td>INT interrupt input</td>
<td>INT0 to INT2</td>
<td>I</td>
<td>VCC1</td>
<td>Input for the INT interrupt.</td>
</tr>
<tr>
<td>INT3 to INT7</td>
<td>I</td>
<td>VCC2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NMI interrupt input</td>
<td>NMI</td>
<td>I</td>
<td>VCC1</td>
<td>Input for the NMI interrupt.</td>
</tr>
<tr>
<td>Key input interrupt input</td>
<td>KI0 to KI7</td>
<td>I</td>
<td>VCC1</td>
<td>Input for the key input interrupt.</td>
</tr>
<tr>
<td>Timer A</td>
<td>TA0OUT to TA4OUT</td>
<td>I/O</td>
<td>VCC1</td>
<td>I/O for timers A0 to A4 (TA0OUT is N-channel open drain output).</td>
</tr>
<tr>
<td>Timer B</td>
<td>TB0IN to TB5IN</td>
<td>I</td>
<td>VCC1</td>
<td>Input for timers B0 to B5.</td>
</tr>
<tr>
<td>control timer</td>
<td>SD</td>
<td>I</td>
<td>VCC1</td>
<td>Forced cutoff input.</td>
</tr>
<tr>
<td></td>
<td>IDU, IDV, IDW</td>
<td>I</td>
<td>VCC2</td>
<td>Input for the position data.</td>
</tr>
<tr>
<td>Real-time clock output</td>
<td>TRHO</td>
<td>O</td>
<td>VCC1</td>
<td>Output for the real-time clock.</td>
</tr>
<tr>
<td>PWM output</td>
<td>PWM0, PWM1</td>
<td>O</td>
<td>VCC1, VCC2</td>
<td>PWM output.</td>
</tr>
<tr>
<td>Remote control signal</td>
<td>PMC0, PMC1</td>
<td>I</td>
<td>VCC1</td>
<td>Input for the remote control signal receiver.</td>
</tr>
<tr>
<td>receiver input</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Serial interface</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UART0 to UART2, UART5 to UART7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CTS0 to CTS2, CTS5</td>
<td>I</td>
<td>VCC1</td>
<td>Input pins to control data transmission.</td>
</tr>
<tr>
<td></td>
<td>CTS6, CTS7</td>
<td>I</td>
<td>VCC2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RTS0 to RTS2, RTS5</td>
<td>O</td>
<td>VCC1</td>
<td>Output pins to control data reception.</td>
</tr>
<tr>
<td></td>
<td>RTS6, RTS7</td>
<td>O</td>
<td>VCC2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CLK0 to CLK2, CLK5</td>
<td>I/O</td>
<td>VCC1</td>
<td>Transmit/receive clock I/O.</td>
</tr>
<tr>
<td></td>
<td>CLK6, CLK7</td>
<td>I/O</td>
<td>VCC2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RXD0 to RXD2, RXD5</td>
<td>I</td>
<td>VCC1</td>
<td>Serial input.</td>
</tr>
<tr>
<td></td>
<td>RXD6, RXD7</td>
<td>I</td>
<td>VCC2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TXD0 to TXD2, TXD5</td>
<td>O</td>
<td>VCC1</td>
<td>Serial data output. (2)</td>
</tr>
<tr>
<td></td>
<td>TXD6, TXD7</td>
<td>O</td>
<td>VCC2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CLK51</td>
<td>O</td>
<td>VCC1</td>
<td>Output for the transmit/receive clock multiple-pin output function.</td>
</tr>
</tbody>
</table>

Notes:
1. Contact the manufacturer of crystal/ceramic resonator regarding the oscillation characteristics.
2. TXD2, SDA2, and SCL2 are N-channel open drain output pins. TXDi, SDAi, and SCLi can be selected as CMOS output pins or N-channel open drain output pins (i = 0, 1, 5 to 7).
<table>
<thead>
<tr>
<th>Signal Name</th>
<th>Pin Name</th>
<th>I/O</th>
<th>Power Supply</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UART0 to UART2, UART5 to UART7 I²C mode</td>
<td>SDA0 to SDA2, SDA5</td>
<td>I/O</td>
<td>VCC1</td>
<td>Serial data I/O.</td>
</tr>
<tr>
<td></td>
<td>SDA6, SDA7</td>
<td>I/O</td>
<td>VCC2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SCL0 to SCL2, SCL5</td>
<td>I/O</td>
<td>VCC1</td>
<td>Transmit/receive clock I/O.</td>
</tr>
<tr>
<td></td>
<td>SCL6, SCL7</td>
<td>I/O</td>
<td>VCC2</td>
<td></td>
</tr>
<tr>
<td>Serial interface SI/O3, SI/O4</td>
<td>CLK3, CLK4</td>
<td>I/O</td>
<td>VCC1</td>
<td>Transmit/receive clock I/O.</td>
</tr>
<tr>
<td></td>
<td>SIN3, SIN4</td>
<td>I</td>
<td>VCC1</td>
<td>Serial data input.</td>
</tr>
<tr>
<td></td>
<td>SOUT3, SOUT4</td>
<td>O</td>
<td>VCC1</td>
<td>Serial data output.</td>
</tr>
<tr>
<td>Multi-master I²C-bus interface</td>
<td>SDAMM</td>
<td>I/O</td>
<td>VCC1</td>
<td>Serial data I/O (N-channel open drain output).</td>
</tr>
<tr>
<td></td>
<td>SCLMM</td>
<td>I/O</td>
<td>VCC1</td>
<td>Transmit/receive clock I/O (N-channel open drain output).</td>
</tr>
<tr>
<td>CEC I/O</td>
<td>CEC</td>
<td>I/O</td>
<td>VCC1</td>
<td>CEC I/O (N-channel open drain output).</td>
</tr>
<tr>
<td>Reference voltage input</td>
<td>VREF</td>
<td>I</td>
<td>VCC1</td>
<td>Reference voltage input for the A/D and D/A converters.</td>
</tr>
<tr>
<td>A/D converter</td>
<td>AN0 to AN7</td>
<td>I</td>
<td>VCC1</td>
<td>Analog input.</td>
</tr>
<tr>
<td></td>
<td>AN0_0 to AN0_7, AN2_0 to AN2_7</td>
<td>I</td>
<td>VCC2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ADTRG</td>
<td>I</td>
<td>VCC1</td>
<td>External trigger input.</td>
</tr>
<tr>
<td></td>
<td>ANEX0, ANEX1</td>
<td>I</td>
<td>VCC1</td>
<td>Extended analog input.</td>
</tr>
<tr>
<td>D/A converter</td>
<td>DA0, DA1</td>
<td>O</td>
<td>VCC1</td>
<td>Output for the D/A converter.</td>
</tr>
<tr>
<td>I/O ports</td>
<td>P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7</td>
<td>I/O</td>
<td>VCC2</td>
<td>8-bit CMOS I/O ports. A direction register determines whether each pin is used as an input port or an output port. A pull-up resistor may be enabled or disabled for input ports in 4-bit units.</td>
</tr>
<tr>
<td></td>
<td>P6_0 to P6_7, P7_0 to P7_7, P8_0 to P8_7, P9_0 to P9_7, P10_0 to P10_7</td>
<td>I/O</td>
<td>VCC1</td>
<td>8-bit I/O ports having equivalent functions to P0. However, P7_0, P7_1, and P8_5 are N-channel open drain output ports. No pull-up resistor is provided. P8_5 is an input port for verifying the NMI pin level and shares a pin with NMI.</td>
</tr>
</tbody>
</table>
Table 1.13 Pin Functions for the 80-Pin Package (1/2)

<table>
<thead>
<tr>
<th>Signal Name</th>
<th>Pin Name</th>
<th>I/O</th>
<th>Power Supply</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power supply input</td>
<td>VCC1, VSS</td>
<td>I</td>
<td>-</td>
<td>Apply 1.8 to 5.5 V to the VCC1 pin and 0 V to the VSS pin.</td>
</tr>
<tr>
<td>Analog power supply input</td>
<td>AVCC, AVSS</td>
<td>I</td>
<td>VCC1</td>
<td>This is the power supply for the A/D and D/A converters. Connect the AVCC pin to VCC1, and connect the AVSS pin to VSS.</td>
</tr>
<tr>
<td>Reset input</td>
<td>RESET</td>
<td>I</td>
<td>VCC1</td>
<td>Driving this pin low resets the MCU.</td>
</tr>
<tr>
<td>CNVSS</td>
<td>CNVSS</td>
<td>I</td>
<td>VCC1</td>
<td>Input pin to switch processor modes. After a reset, to start operating in single-chip mode, connect the CNVSS pin to VSS via a resistor.</td>
</tr>
<tr>
<td>Main clock input</td>
<td>XIN</td>
<td>I</td>
<td>VCC1</td>
<td>I/O pins for the main clock oscillator. Connect a ceramic resonator or crystal between pins XIN and XOUT. (1) Input an external clock to XIN pin and leave XOUT pin open.</td>
</tr>
<tr>
<td>Main clock output</td>
<td>XOUT</td>
<td>O</td>
<td>VCC1</td>
<td>Output for the real-time clock.</td>
</tr>
<tr>
<td>Sub clock input</td>
<td>XCIN</td>
<td>I</td>
<td>VCC1</td>
<td>I/O pins for a sub clock oscillator. Connect a crystal between XCIN pin and XCOUT pin. (1) Input an external clock to XCIN pin and leave XCOUT pin open.</td>
</tr>
<tr>
<td>Sub clock output</td>
<td>XCOUT</td>
<td>O</td>
<td>VCC1</td>
<td>Output for the real-time clock.</td>
</tr>
<tr>
<td>Clock output</td>
<td>CLKOUT</td>
<td>O</td>
<td>VCC1</td>
<td>Outputs a clock with the same frequency as fC, f1, f8, or f32.</td>
</tr>
<tr>
<td>INT interrupt input</td>
<td>INT0 to INT2</td>
<td>I</td>
<td>VCC1</td>
<td>Input for the INT interrupt.</td>
</tr>
<tr>
<td>INT6, INT7</td>
<td></td>
<td>I</td>
<td>VCC1</td>
<td>Input for the INT interrupt.</td>
</tr>
<tr>
<td>NMI interrupt input</td>
<td>NMI</td>
<td>I</td>
<td>VCC1</td>
<td>Input for the NMI interrupt.</td>
</tr>
<tr>
<td>Key input interrupt input</td>
<td>KI0 to KI7</td>
<td>I</td>
<td>VCC1</td>
<td>Input for the key input interrupt.</td>
</tr>
<tr>
<td>Timer A</td>
<td>TA0OUT, TA3OUT, TA4OUT</td>
<td>I/O</td>
<td>VCC1</td>
<td>I/O for timers A0, A3, and A4 (TA0OUT is N-channel open drain output).</td>
</tr>
<tr>
<td></td>
<td>TA0IN, TA3IN, TA4IN</td>
<td>I</td>
<td>VCC1</td>
<td>Input for timers A0, A3, and A4.</td>
</tr>
<tr>
<td></td>
<td>ZP</td>
<td>I</td>
<td>VCC1</td>
<td>Input for Z-phase.</td>
</tr>
<tr>
<td>Timer B</td>
<td>TB0IN, TB2IN to TB5IN</td>
<td>I</td>
<td>VCC1</td>
<td>Input for timers B0, and B2 to B5.</td>
</tr>
<tr>
<td>Real-time clock output</td>
<td>TRHO</td>
<td>O</td>
<td>VCC1</td>
<td>Output for the real-time clock.</td>
</tr>
<tr>
<td>PWM output</td>
<td>PWM0, PWM1</td>
<td>O</td>
<td>VCC1</td>
<td>PWM output.</td>
</tr>
<tr>
<td>Remote control signal receiver input</td>
<td>PMC0</td>
<td>I</td>
<td>VCC1</td>
<td>Input for the remote control signal receiver.</td>
</tr>
</tbody>
</table>

Note:
1. Contact the manufacturer of crystal/ceramic resonator regarding oscillation characteristics.
Table 1.14 Pin Functions for the 80-Pin Package (2/2)

<table>
<thead>
<tr>
<th>Signal Name</th>
<th>Pin Name</th>
<th>I/O</th>
<th>Power Supply</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serial interface UART0 to UART2, UART5</td>
<td>CTS0, CTS1, CTS5</td>
<td>I</td>
<td>VCC1</td>
<td>Input pins to control data transmission</td>
</tr>
<tr>
<td></td>
<td>RTS0, RTS1, RTS5</td>
<td>O</td>
<td>VCC1</td>
<td>Output pins to control data reception</td>
</tr>
<tr>
<td></td>
<td>CLK0, CLK1, CLK5</td>
<td>I/O</td>
<td>VCC1</td>
<td>Transmit/receive clock I/O.</td>
</tr>
<tr>
<td></td>
<td>RXD0 to RXD2, RXD5</td>
<td>I</td>
<td>VCC1</td>
<td>Serial data input.</td>
</tr>
<tr>
<td></td>
<td>TXD0 to TXD2, TXD5</td>
<td>O</td>
<td>VCC1</td>
<td>Serial data output. (1)</td>
</tr>
<tr>
<td></td>
<td>CLKS1</td>
<td>O</td>
<td>VCC1</td>
<td>Output for the transmit/receive clock multiple-pin output function.</td>
</tr>
<tr>
<td>UART0 to UART2, UART5 I²C mode</td>
<td>SDA0 to SDA2, SDA5</td>
<td>I/O</td>
<td>VCC1</td>
<td>Serial data I/O.</td>
</tr>
<tr>
<td></td>
<td>SCL0 to SCL2, SCL5</td>
<td>I/O</td>
<td>VCC1</td>
<td>Transmit/receive clock I/O.</td>
</tr>
<tr>
<td>Serial interface Si/O3, Si/O4</td>
<td>CLK3, CLK4</td>
<td>I/O</td>
<td>VCC1</td>
<td>Transmit/receive clock I/O.</td>
</tr>
<tr>
<td></td>
<td>SIN4</td>
<td>I</td>
<td>VCC1</td>
<td>Serial data input.</td>
</tr>
<tr>
<td></td>
<td>SOUT3, SOUT4</td>
<td>O</td>
<td>VCC1</td>
<td>Serial data output.</td>
</tr>
<tr>
<td>Multi-master I²C-bus interface</td>
<td>SDAMM</td>
<td>I/O</td>
<td>VCC1</td>
<td>Serial data I/O (N-channel open drain output).</td>
</tr>
<tr>
<td></td>
<td>SCLMM</td>
<td>I/O</td>
<td>VCC1</td>
<td>Transmit/receive clock I/O (N-channel open drain output).</td>
</tr>
<tr>
<td>CEC I/O</td>
<td>CEC</td>
<td>I/O</td>
<td>VCC1</td>
<td>CEC I/O (N-channel open drain output).</td>
</tr>
<tr>
<td>Reference voltage input</td>
<td>VREF</td>
<td>I</td>
<td>VCC1</td>
<td>Reference voltage input for the A/D and D/A converters.</td>
</tr>
<tr>
<td>A/D converter</td>
<td>AN0 to AN7</td>
<td>I</td>
<td>VCC1</td>
<td>Analog input.</td>
</tr>
<tr>
<td></td>
<td>AN0_0 to AN0_7, AN2_0 to AN2_7</td>
<td>I</td>
<td>VCC1</td>
<td>Analog input.</td>
</tr>
<tr>
<td></td>
<td>ADTRG</td>
<td>I</td>
<td>VCC1</td>
<td>External trigger input.</td>
</tr>
<tr>
<td></td>
<td>ANEX0, ANEX1</td>
<td>I</td>
<td>VCC1</td>
<td>Extended analog input.</td>
</tr>
<tr>
<td>D/A converter</td>
<td>DA0, DA1</td>
<td>O</td>
<td>VCC1</td>
<td>Output for the D/A converter.</td>
</tr>
<tr>
<td>I/O ports</td>
<td>P0_0 to P0_7, P2_0 to P2_7, P3_0 to P3_7, P5_0 to P5_7, P6_0 to P6_7, P8_0 to P8_7, P10_0 to P10_7</td>
<td>I/O</td>
<td>VCC1</td>
<td>8-bit CMOS I/O ports. A direction register determines whether each pin is used as an input port or an output port. A pull-up resistor may be enabled or disabled for input ports in 4-bit units. P8_5 is N-channel open drain output port. No pull-up resistor is provided. P8_5 is an input port for verifying the NMI pin level and shares a pin with NMI.</td>
</tr>
<tr>
<td></td>
<td>P4_0 to P4_3, P7_0, P7_1, P7_6, P7_7, P9_0, P9_2 to P9_7</td>
<td>I/O</td>
<td>VCC1</td>
<td>I/O ports having equivalent functions to P0. However, P7_0 and P7_1 are N-channel open drain output ports. No pull-up resistor is provided.</td>
</tr>
</tbody>
</table>

Note:
1. TXD2, SDA2, and SCL2 are N-channel open drain output pins. TXDi (i = 0, 1, 5), SDAi, and SCLI can be selected as CMOS output pins or N-channel open drain output pins.
2. Central Processing Unit (CPU)

Figure 2.1 shows the CPU registers. Seven registers (R0, R1, R2, R3, A0, A1, and FB) out of 13 compose a register bank, and there are two register banks.

![CPU Registers Diagram](image)

Figure 2.1 CPU Registers

Note:
1. These registers compose a register bank. There are two register banks.
2.1 Data Registers (R0, R1, R2, and R3)
R0, R1, R2, and R3 are 16-bit registers used for transfer, arithmetic, and logic operations. R0 and R1 can be split into upper (R0H/R1H) and lower (R0L/R1L) bits to be used separately as 8-bit data registers. R0 can be combined with R2, and R3 can be combined with R1 and be used as 32-bit data registers R2R0 and R3R1, respectively.

2.2 Address Registers (A0 and A1)
A0 and A1 are 16-bit registers used for indirect addressing, relative addressing, transfer, arithmetic, and logic operations. A0 can be combined with A1 and used as a 32-bit address register (A1A0).

2.3 Frame Base Register (FB)
FB is a 16-bit register that is used for FB relative addressing.

2.4 Interrupt Table Register (INTB)
INTB is a 20-bit register that indicates the start address of a relocatable interrupt vector table.

2.5 Program Counter (PC)
The PC is 20 bits wide and indicates the address of the next instruction to be executed.

2.6 User Stack Pointer (USP) and Interrupt Stack Pointer (ISP)
The USP and ISP stack pointers (SP) are each comprised of 16 bits. The U flag is used to switch between USP and ISP.

2.7 Static Base Register (SB)
SB is a 16-bit register used for SB relative addressing.

2.8 Flag Register (FLG)
FLG is an 11-bit register that indicates the CPU state.

2.8.1 Carry Flag (C Flag)
The C flag retains a carry, borrow, or shift-out bit generated by the arithmetic/logic unit.

2.8.2 Debug Flag (D Flag)
The D flag is for debugging only. Set it to 0.

2.8.3 Zero Flag (Z Flag)
The Z flag becomes 1 when an arithmetic operation results in 0. Otherwise, it becomes 0.

2.8.4 Sign Flag (S Flag)
The S flag becomes 1 when an arithmetic operation results in a negative value. Otherwise, it becomes 0.

2.8.5 Register Bank Select Flag (B Flag)
Register bank 0 is selected when the B flag is 0. Register bank 1 is selected when this flag is 1.

2.8.6 Overflow Flag (O Flag)
The O flag becomes 1 when an arithmetic operation results in an overflow. Otherwise, it becomes 0.
2.8.7 Interrupt Enable Flag (I Flag)

The I flag enables maskable interrupts. Maskable interrupts are disabled when the I flag is 0, and enabled when it is 1. The I flag becomes 0 when an interrupt request is accepted.

2.8.8 Stack Pointer Select Flag (U Flag)

ISP is selected when the U flag is 0. USP is selected when the U flag is 1. The U flag becomes 0 when a hardware interrupt request is accepted, or the INT instruction of software interrupt number 0 to 31 is executed.

2.8.9 Processor Interrupt Priority Level (IPL)

IPL is 3 bits wide and assigns processor interrupt priority levels from 0 to 7. If a requested interrupt has higher priority than IPL, the interrupt request is enabled.

2.8.10 Reserved Areas

Only set these bits to 0. The read value is undefined.
3. Address Space

3.1 Address Space

The M16C/63 Group has a 1 MB address space from 00000h to FFFFFh. Address space is expandable to 4 MB with the memory area expansion function. Addresses 40000h to BFFFFh can be used as external areas from bank 0 to bank 7. Figure 3.1 shows the Address Space. Areas that can be accessed vary depending on processor mode and the status of each control bit.

![Address Space Diagram](image)

Notes:
1. Do not access reserved areas.
2. The figure above applies under the following condition:
 - The PM13 bit in the PM1 register is 0 (addresses 04000h to 0CFFFh and 80000h to CFFFFh are used as external areas)

Figure 3.1 Address Space
3.2 Memory Map

Special function registers (SFRs) are allocated from address 00000h to 003FFh and from 0D000h to 0D7FFh. Peripheral function control registers are located here. All blank areas within SFRs are reserved. Do not access these areas.

Internal RAM is allocated from address 00400h and higher, with 10 KB of internal RAM allocated from 00400h to 02BFFh. Internal RAM is used not only for data storage, but also for the stack area when subroutines are called or when an interrupt request is accepted.

The internal ROM is flash memory. Three internal ROM areas are available: data flash, program ROM 1, and program ROM 2.

The data flash is allocated from 0E000h to 0FFFFh. This data flash area is mostly used for data storage, but can also store programs.

Program ROM 2 is allocated from 10000h to 13FFFh. Program ROM 1 is allocated from FFFFFh and lower, with the 64 KB program ROM 1 area allocated from address F0000h to FFFFFh.

The special page vectors are allocated from FFE00h to FFFD7h. They are used for the JMPS and JSRS instructions. Refer to the M16C/60, M16C/20, M16C/Tiny Series Software Manual for details.

The fixed vector table for interrupts is allocated from FFFDCh to FFFFFh.

The 256 bytes beginning with the start address set in the INTB register compose the relocatable vector table for interrupts.

Figure 3.2 shows the Memory Map.

![Memory Map Diagram]

Notes:
1. Do not access reserved areas.
2. The figure above applies under the following conditions:
 - Memory expansion mode
 - The PM10 bit in the PM1 register is 1
 - The PRG2C0 bit in the PRG2C register is 0 (program ROM 2 enabled)
 - The PM13 bit in the PM1 register is 1
 - (all areas in internal RAM and the program ROM 1 area from 80000h are usable)
3. Do not change the data from FFh.

Figure 3.2 Memory Map
3.3 Accessible Area in Each Mode

Areas that can be accessed vary depending on processor mode and the status of each control bit. Figure 3.3 shows the Accessible Area in Each Mode.

In single-chip mode, the SFRs, internal RAM, and internal ROM can be accessed. Address space is expandable to 4 MB with the memory area expansion function.

In memory expansion mode, the SFRs, internal RAM, internal ROM, and external areas can be accessed. Address space is expandable to 4 MB with the memory area expansion function. Allocate ROM to the fixed vector table from FFFDCh to FFFFFh.

Figure 3.3 Accessible Area in Each Mode

Notes:
1. Do not access reserved areas.
2. The figure above applies under the following conditions:
 - Single-chip mode and memory expansion mode
 - The PM10 bit in the PM1 register is 1
 (addresses 0E000h to 0FFFFh are used as data flash)
 - The PRG2C0 bit in the PRG2C register is 0 (program ROM 2 enabled)
 - The PM13 bit in the PM1 register is 1
 (all areas in internal RAM, and the program ROM 1 area from 80000h are usable)
 - Microprocessor mode
 - The PM10 bit is 0 (addresses 0E000h to 0FFFFh are used as the CS2 area)
 - The PRG2C0 bit is 1 (program ROM 2 disabled)
4. Special Function Registers (SFRs)

4.1 SFRs

An SFR is a control register for a peripheral function.

Table 4.1 SFR Information (1)

<table>
<thead>
<tr>
<th>Address</th>
<th>Register</th>
<th>Symbol</th>
<th>Reset Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000h</td>
<td>Processor Mode Register 0</td>
<td>PM0</td>
<td>0000 0000b (CNVSS pin is low)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0000 0011b (CNVSS pin is high)</td>
</tr>
<tr>
<td>0005h</td>
<td>Processor Mode Register 1</td>
<td>PM1</td>
<td>0000 1000b</td>
</tr>
<tr>
<td>0006h</td>
<td>System Clock Control Register 0</td>
<td>CM0</td>
<td>0100 1000b</td>
</tr>
<tr>
<td>0007h</td>
<td>System Clock Control Register 1</td>
<td>CM1</td>
<td>0010 0000b</td>
</tr>
<tr>
<td>0008h</td>
<td>Chip Select Control Register</td>
<td>CSR</td>
<td>01h</td>
</tr>
<tr>
<td>0009h</td>
<td>External Area Recovery Cycle Control Register</td>
<td>EWR</td>
<td>XXXX XX00b</td>
</tr>
<tr>
<td>000Ah</td>
<td>Protect Register</td>
<td>PRCR</td>
<td>00h</td>
</tr>
<tr>
<td>000Bh</td>
<td>Data Bank Register</td>
<td>DBR</td>
<td>00h</td>
</tr>
<tr>
<td>000Ch</td>
<td>Oscillation Stop Detection Register</td>
<td>CM2</td>
<td>0X00 0010b (3)</td>
</tr>
<tr>
<td>000Dh</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>000Eh</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>000Fh</td>
<td>Program 2 Area Control Register</td>
<td>PRG2C</td>
<td>XXXX XX00b</td>
</tr>
<tr>
<td>0011h</td>
<td>External Area Wait Control Expansion Register</td>
<td>EWC</td>
<td>00h</td>
</tr>
<tr>
<td>0012h</td>
<td>Peripheral Clock Select Register</td>
<td>PCLKR</td>
<td>0000 0011b</td>
</tr>
<tr>
<td>0013h</td>
<td>Sub Clock Division Control Register</td>
<td>SCM0</td>
<td>XXXX X000b</td>
</tr>
<tr>
<td>0014h</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0015h</td>
<td>Clock Prescaler Reset Flag</td>
<td>CPSRF</td>
<td>0XXX XXXXb</td>
</tr>
<tr>
<td>0016h</td>
<td>Peripheral Clock Stop Register 1</td>
<td>PCLKSTP1</td>
<td>X000 0000b</td>
</tr>
<tr>
<td>0017h</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0018h</td>
<td>Reset Source Determine Register</td>
<td>RSTFR</td>
<td>XX00 001Xb (hardware reset) (4)</td>
</tr>
<tr>
<td>0019h</td>
<td>Voltage Detector 2 Flag Register</td>
<td>VCR1</td>
<td>0000 1000b (5)</td>
</tr>
<tr>
<td>001Ah</td>
<td>Voltage Detector Operation Enable Register</td>
<td>VCR2</td>
<td>00h (5)</td>
</tr>
<tr>
<td>001Bh</td>
<td>Chip Select Expansion Control Register</td>
<td>CSE</td>
<td>00h</td>
</tr>
<tr>
<td>001Ch</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>001Dh</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>001Eh</td>
<td>Processor Mode Register 2</td>
<td>PM2</td>
<td>XX00 0X01b</td>
</tr>
<tr>
<td>001Fh</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:

1. The blank areas are reserved. No access is allowed.
2. Software reset, watchdog timer reset, oscillator stop detect reset, voltage monitor 1 reset, and voltage monitor 2 reset do not affect the following bits: bits PM01 and PM00 in the PM0 register.
3. Oscillator stop detect reset does not affect bits CM20, CM21, and CM27.
4. The state of the bits in the RSTFR register depends on the reset type.
5. This is the reset value after hardware reset. Refer to the explanation of each register for details.
Table 4.2 SFR Information (2) (1)

<table>
<thead>
<tr>
<th>Address</th>
<th>Register</th>
<th>Symbol</th>
<th>Reset Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0020h</td>
<td>40 MHz On-Chip Oscillator Control Register 0</td>
<td>FRA0</td>
<td>XXXX XX00b</td>
</tr>
<tr>
<td>0021h</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0022h</td>
<td>Voltage Monitor Function Select Register</td>
<td>VWCE</td>
<td>00h</td>
</tr>
<tr>
<td>0023h</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0024h</td>
<td>Voltage Detector 1 Level Select Register</td>
<td>VD1LS</td>
<td>0000 1010b(2)</td>
</tr>
<tr>
<td>0025h</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0026h</td>
<td>Voltage Monitor 0 Control Register</td>
<td>VW0C</td>
<td>1000 XX10b (2)</td>
</tr>
<tr>
<td>0027h</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0028h</td>
<td>Voltage Monitor 1 Control Register</td>
<td>VW1C</td>
<td>1000 1010b(2)</td>
</tr>
<tr>
<td>0029h</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>002Ah</td>
<td>Voltage Monitor 2 Control Register</td>
<td>VW2C</td>
<td>1000 0X10b (2)</td>
</tr>
<tr>
<td>002Bh</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>002Ch</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>002Dh</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>002 Eh</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>002Fh</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0030h</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0031h</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0032h</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0033h</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0034h</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0035h</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0036h</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0037h</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0038h</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0039h</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>003 Ah</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>003Bh</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>003Ch</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>003Dh</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>003 Eh</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>003 Fh</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1. The blank areas are reserved. No access is allowed.
2. This is the reset value after hardware reset. Refer to the explanation of each register for details.
Table 4.3 SFR Information (3) (1)

<table>
<thead>
<tr>
<th>Address</th>
<th>Register</th>
<th>Symbol</th>
<th>Reset Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0040h</td>
<td>INT7 Interrupt Control Register</td>
<td>INT7IC</td>
<td>XX00 X000b</td>
</tr>
<tr>
<td>0041h</td>
<td>INT6 Interrupt Control Register</td>
<td>INT6IC</td>
<td>XX00 X000b</td>
</tr>
<tr>
<td>0042h</td>
<td>INT3 Interrupt Control Register</td>
<td>INT3IC</td>
<td>XX00 X000b</td>
</tr>
<tr>
<td>0043h</td>
<td>Timer B5 Interrupt Control Register</td>
<td>TB5IC</td>
<td>XXXX X000b</td>
</tr>
<tr>
<td>0044h</td>
<td>Timer B4 Interrupt Control Register</td>
<td>TB4IC</td>
<td>U1BCNIC XXXX X000b</td>
</tr>
<tr>
<td>0045h</td>
<td>Timer B3 Interrupt Control Register</td>
<td>TB3IC</td>
<td>U0BCNIC XXXX X000b</td>
</tr>
<tr>
<td>0046h</td>
<td>UART0 Bus Collision Detection Interrupt Control Register</td>
<td>TB0IC</td>
<td></td>
</tr>
<tr>
<td>0047h</td>
<td>UART1 Bus Collision Detection Interrupt Control Register</td>
<td>TB1IC</td>
<td></td>
</tr>
<tr>
<td>0048h</td>
<td>UART2 Bus Collision Detection Interrupt Control Register</td>
<td>TB2IC</td>
<td></td>
</tr>
<tr>
<td>0049h</td>
<td>UART3 Bus Collision Detection Interrupt Control Register</td>
<td>TB3IC</td>
<td></td>
</tr>
<tr>
<td>004Ah</td>
<td>UART4 Bus Collision Detection Interrupt Control Register</td>
<td>TB4IC</td>
<td></td>
</tr>
<tr>
<td>004Bh</td>
<td>DMA0 Interrupt Control Register</td>
<td>DM0IC</td>
<td>XXXX X000b</td>
</tr>
<tr>
<td>004Ch</td>
<td>DMA1 Interrupt Control Register</td>
<td>DM1IC</td>
<td>XXXX X000b</td>
</tr>
<tr>
<td>004Dh</td>
<td>Key Input Interrupt Control Register</td>
<td>KUPIC</td>
<td>XX00 X000b</td>
</tr>
<tr>
<td>004Eh</td>
<td>A/D Conversion Interrupt Control Register</td>
<td>ADIC</td>
<td>XXXX X000b</td>
</tr>
<tr>
<td>004Fh</td>
<td>UART2 Transmit Interrupt Control Register</td>
<td>S2TIC</td>
<td>XXXX X000b</td>
</tr>
<tr>
<td>0050h</td>
<td>UART2 Receive Interrupt Control Register</td>
<td>S2RIC</td>
<td>XXXX X000b</td>
</tr>
<tr>
<td>0051h</td>
<td>UART0 Transmit Interrupt Control Register</td>
<td>S0TIC</td>
<td>XXXX X000b</td>
</tr>
<tr>
<td>0052h</td>
<td>UART0 Receive Interrupt Control Register</td>
<td>S0RIC</td>
<td>XXXX X000b</td>
</tr>
<tr>
<td>0053h</td>
<td>UART1 Transmit Interrupt Control Register</td>
<td>S1TIC</td>
<td>XXXX X000b</td>
</tr>
<tr>
<td>0054h</td>
<td>UART1 Receive Interrupt Control Register</td>
<td>S1RIC</td>
<td>XXXX X000b</td>
</tr>
<tr>
<td>0055h</td>
<td>Timer A0 Interrupt Control Register</td>
<td>TA0IC</td>
<td>XXXX X000b</td>
</tr>
<tr>
<td>0056h</td>
<td>Timer A1 Interrupt Control Register</td>
<td>TA1IC</td>
<td>XXXX X000b</td>
</tr>
<tr>
<td>0057h</td>
<td>Timer A2 Interrupt Control Register</td>
<td>TA2IC</td>
<td>XXXX X000b</td>
</tr>
<tr>
<td>0058h</td>
<td>Timer A3 Interrupt Control Register</td>
<td>TA3IC</td>
<td>XXXX X000b</td>
</tr>
<tr>
<td>0059h</td>
<td>Timer A4 Interrupt Control Register</td>
<td>TA4IC</td>
<td>XXXX X000b</td>
</tr>
<tr>
<td>005Ah</td>
<td>Timer B0 Interrupt Control Register</td>
<td>TB0IC</td>
<td>XXXX X000b</td>
</tr>
<tr>
<td>005Bh</td>
<td>Timer B1 Interrupt Control Register</td>
<td>TB1IC</td>
<td>XXXX X000b</td>
</tr>
<tr>
<td>005Ch</td>
<td>Timer B2 Interrupt Control Register</td>
<td>TB2IC</td>
<td>XXXX X000b</td>
</tr>
<tr>
<td>005Dh</td>
<td>INT0 Interrupt Control Register</td>
<td>INT0IC</td>
<td>XX00 X000b</td>
</tr>
<tr>
<td>005 Eh</td>
<td>INT1 Interrupt Control Register</td>
<td>INT1IC</td>
<td>XX00 X000b</td>
</tr>
<tr>
<td>005Fh</td>
<td>INT2 Interrupt Control Register</td>
<td>INT2IC</td>
<td>XX00 X000b</td>
</tr>
</tbody>
</table>

Note:
1. The blank areas are reserved. No access is allowed.

X: Undefined
Table 4.4 SFR Information (4) (1)

<table>
<thead>
<tr>
<th>Address</th>
<th>Register</th>
<th>Symbol</th>
<th>Reset Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0060h</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0061h</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0062h</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0063h</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0064h</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0065h</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0066h</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0067h</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0068h</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0069h</td>
<td>DMA2 Interrupt Control Register</td>
<td>DM2IC</td>
<td>XXXX X000b</td>
</tr>
<tr>
<td>006Ah</td>
<td>DMA3 Interrupt Control Register</td>
<td>DM3IC</td>
<td>XXXX X000b</td>
</tr>
<tr>
<td>006Bh</td>
<td>UART5 Bus Collision Detection Interrupt Control Register</td>
<td>U5BCNIC</td>
<td>XXXX X000b</td>
</tr>
<tr>
<td></td>
<td>CEC1 Interrupt Control Register</td>
<td></td>
<td></td>
</tr>
<tr>
<td>006Ch</td>
<td>UART5 Transmit Interrupt Control Register</td>
<td>S5TIC</td>
<td>XXXX X000b</td>
</tr>
<tr>
<td></td>
<td>CEC2 Interrupt Control Register</td>
<td></td>
<td></td>
</tr>
<tr>
<td>006Dh</td>
<td>UART5 Receive Interrupt Control Register</td>
<td>S5RIC</td>
<td>XXXX X000b</td>
</tr>
<tr>
<td>006Eh</td>
<td>UART6 Bus Collision Detection Interrupt Control Register</td>
<td>U6BCNIC</td>
<td>XXXX X000b</td>
</tr>
<tr>
<td></td>
<td>Real-Time Clock Periodic Interrupt Control Register</td>
<td>RTCTIC</td>
<td></td>
</tr>
<tr>
<td>006Fh</td>
<td>UART6 Transmit Interrupt Control Register</td>
<td>S6TIC</td>
<td>XXXX X000b</td>
</tr>
<tr>
<td></td>
<td>Real-Time Clock Alarm Interrupt Control Register</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0070h</td>
<td>UART6 Receive Interrupt Control Register</td>
<td>S6RIC</td>
<td>XXXX X000b</td>
</tr>
<tr>
<td>0071h</td>
<td>UART7 Bus Collision Detection Interrupt Control Register</td>
<td>U7BCNIC</td>
<td>XXXX X000b</td>
</tr>
<tr>
<td></td>
<td>Remote Control Signal Receiver 0 Interrupt Control Register</td>
<td>PMCOIC</td>
<td></td>
</tr>
<tr>
<td>0072h</td>
<td>UART7 Transmit Interrupt Control Register</td>
<td>S7TIC</td>
<td>XXXX X000b</td>
</tr>
<tr>
<td></td>
<td>Remote Control Signal Receiver 1 Interrupt Control Register</td>
<td>PMC1IC</td>
<td></td>
</tr>
<tr>
<td>0073h</td>
<td>UART7 Receive Interrupt Control Register</td>
<td>S7RIC</td>
<td>XXXX X000b</td>
</tr>
<tr>
<td>0074h</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0075h</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0076h</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0077h</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0078h</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0079h</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>007Ah</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>007Bh</td>
<td>I2C-bus Interface Interrupt Control Register</td>
<td>IICIC</td>
<td>XXXX X000b</td>
</tr>
<tr>
<td>007Ch</td>
<td>SCL/SDA Interrupt Control Register</td>
<td>SCLDAIC</td>
<td>XXXX X000b</td>
</tr>
<tr>
<td>007Dh</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>007 Eh</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>007 Fh</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0080h to</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>017Fh</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note:
1. The blank areas are reserved. No access is allowed.
Table 4.5 SFR Information (5)

<table>
<thead>
<tr>
<th>Address</th>
<th>Register</th>
<th>Symbol</th>
<th>Reset Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0180h</td>
<td>DMA0 Source Pointer</td>
<td>SAR0</td>
<td>XXh</td>
</tr>
<tr>
<td>0181h</td>
<td>DMA0 Destination Pointer</td>
<td>DAR0</td>
<td>XXh</td>
</tr>
<tr>
<td>0182h</td>
<td></td>
<td></td>
<td>0Xh</td>
</tr>
<tr>
<td>0183h</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0184h</td>
<td></td>
<td></td>
<td>XXh</td>
</tr>
<tr>
<td>0185h</td>
<td>DMA0 Transfer Counter</td>
<td>TCR0</td>
<td>XXh</td>
</tr>
<tr>
<td>0186h</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0187h</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0188h</td>
<td>DMA1 Source Pointer</td>
<td>SAR1</td>
<td>XXh</td>
</tr>
<tr>
<td>0189h</td>
<td>DMA1 Destination Pointer</td>
<td>DAR1</td>
<td>XXh</td>
</tr>
<tr>
<td>018Ah</td>
<td></td>
<td></td>
<td>0Xh</td>
</tr>
<tr>
<td>018Bh</td>
<td>DMA1 Transfer Counter</td>
<td>TCR1</td>
<td>XXh</td>
</tr>
<tr>
<td>018Ch</td>
<td>DMA0 Control Register</td>
<td>DM0CON</td>
<td>0000 0X00b</td>
</tr>
<tr>
<td>018Dh</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>018Eh</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>018Fh</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0190h</td>
<td>DMA1 Control Register</td>
<td>DM1CON</td>
<td>0000 0X00b</td>
</tr>
<tr>
<td>0191h</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0192h</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0193h</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0194h</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0195h</td>
<td>DMA2 Source Pointer</td>
<td>SAR2</td>
<td>XXh</td>
</tr>
<tr>
<td>0196h</td>
<td>DMA2 Destination Pointer</td>
<td>DAR2</td>
<td>XXh</td>
</tr>
<tr>
<td>0197h</td>
<td></td>
<td></td>
<td>0Xh</td>
</tr>
<tr>
<td>0198h</td>
<td>DMA2 Transfer Counter</td>
<td>TCR2</td>
<td>XXh</td>
</tr>
<tr>
<td>0199h</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>019Ah</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>019Bh</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>019Ch</td>
<td>DMA2 Control Register</td>
<td>DM2CON</td>
<td>0000 0X00b</td>
</tr>
<tr>
<td>019Dh</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>019Eh</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>019Fh</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note:
1. The blank areas are reserved. No access is allowed.
Table 4.6 SFR Information (6) (1)

<table>
<thead>
<tr>
<th>Address</th>
<th>Register Description</th>
<th>Symbol</th>
<th>Reset Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>01B0h</td>
<td>DMA3 Source Pointer</td>
<td>SAR3</td>
<td>XXh</td>
</tr>
<tr>
<td>01B1h</td>
<td>DMA3 Source Pointer</td>
<td>SAR3</td>
<td>XXh</td>
</tr>
<tr>
<td>01B2h</td>
<td>DMA3 Source Pointer</td>
<td>SAR3</td>
<td>0Xh</td>
</tr>
<tr>
<td>01B3h</td>
<td>DMA3 Source Pointer</td>
<td>SAR3</td>
<td>XXh</td>
</tr>
<tr>
<td>01B4h</td>
<td>DMA3 Destination Pointer</td>
<td>DAR3</td>
<td>XXh</td>
</tr>
<tr>
<td>01B5h</td>
<td>DMA3 Destination Pointer</td>
<td>DAR3</td>
<td>XXh</td>
</tr>
<tr>
<td>01B6h</td>
<td>DMA3 Destination Pointer</td>
<td>DAR3</td>
<td>0Xh</td>
</tr>
<tr>
<td>01B7h</td>
<td>DMA3 Destination Pointer</td>
<td>DAR3</td>
<td>XXh</td>
</tr>
<tr>
<td>01B8h</td>
<td>DMA3 Transfer Counter</td>
<td>TCR3</td>
<td>XXh</td>
</tr>
<tr>
<td>01B9h</td>
<td>DMA3 Transfer Counter</td>
<td>TCR3</td>
<td>XXh</td>
</tr>
<tr>
<td>01BCh</td>
<td>DMA3 Control Register</td>
<td>DM3CON</td>
<td>0000 0X00b</td>
</tr>
<tr>
<td>01BDh</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01BEh</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01BFh</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01C0h</td>
<td>Timer B0-1 Register</td>
<td>TB01</td>
<td>XXh</td>
</tr>
<tr>
<td>01C1h</td>
<td>Timer B0-1 Register</td>
<td>TB01</td>
<td>XXh</td>
</tr>
<tr>
<td>01C2h</td>
<td>Timer B1-1 Register</td>
<td>TB11</td>
<td>XXh</td>
</tr>
<tr>
<td>01C3h</td>
<td>Timer B1-1 Register</td>
<td>TB11</td>
<td>XXh</td>
</tr>
<tr>
<td>01C4h</td>
<td>Timer B2-1 Register</td>
<td>TB21</td>
<td>XXh</td>
</tr>
<tr>
<td>01C5h</td>
<td>Timer B2-1 Register</td>
<td>TB21</td>
<td>XXh</td>
</tr>
<tr>
<td>01C6h</td>
<td>Pulse Period/Pulse Width Measurement Mode Function Select Register 1</td>
<td>PPWS1</td>
<td>XXXX X000b</td>
</tr>
<tr>
<td>01C7h</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01C8h</td>
<td>Timer B Count Source Select Register 0</td>
<td>TBCS0</td>
<td>00h</td>
</tr>
<tr>
<td>01C9h</td>
<td>Timer B Count Source Select Register 1</td>
<td>TBCS1</td>
<td>X0h</td>
</tr>
<tr>
<td>01CAh</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01CBh</td>
<td>Timer AB Division Control Register 0</td>
<td>TCKDIVC0</td>
<td>0000 0X00b</td>
</tr>
<tr>
<td>01CCh</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01CDh</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01CEh</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01CFh</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01D0h</td>
<td>Timer A Count Source Select Register 0</td>
<td>TACS0</td>
<td>00h</td>
</tr>
<tr>
<td>01D1h</td>
<td>Timer A Count Source Select Register 1</td>
<td>TACS1</td>
<td>00h</td>
</tr>
<tr>
<td>01D2h</td>
<td>Timer A Count Source Select Register 2</td>
<td>TACSZ</td>
<td>X0h</td>
</tr>
<tr>
<td>01D3h</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01D4h</td>
<td>16-bit Pulse Width Modulation Mode Function Select Register</td>
<td>PWMFS</td>
<td>0XX0 X00Xb</td>
</tr>
<tr>
<td>01D5h</td>
<td>Timer A Waveform Output Function Select Register</td>
<td>TAPOFS</td>
<td>XXX0 0000b</td>
</tr>
<tr>
<td>01D6h</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01D7h</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01D8h</td>
<td>Timer A Output Waveform Change Enable Register</td>
<td>TAOW</td>
<td>XXX0 X00Xb</td>
</tr>
<tr>
<td>01D9h</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01DAh</td>
<td>Three-Phase Protect Control Register</td>
<td>TPRC</td>
<td>00h</td>
</tr>
<tr>
<td>01DBh</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01DCh</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01DDh</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01DEh</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01DFh</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note:
1. The blank areas are reserved. No access is allowed.
Table 4.7 SFR Information (7) *(1)*

<table>
<thead>
<tr>
<th>Address</th>
<th>Register</th>
<th>Symbol</th>
<th>Reset Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>01E0h</td>
<td>Timer B3-1 Register</td>
<td>TB31</td>
<td>XXh</td>
</tr>
<tr>
<td>01E1h</td>
<td>Timer B4-1 Register</td>
<td>TB41</td>
<td>XXh</td>
</tr>
<tr>
<td>01E2h</td>
<td>Timer B5-1 Register</td>
<td>TB51</td>
<td>XXh</td>
</tr>
<tr>
<td>01E3h</td>
<td>Pulse Period/Pulse Width Measurement Mode Function Select Register 2</td>
<td>PPWFS2</td>
<td>XXXX X000b</td>
</tr>
<tr>
<td>01E7h</td>
<td>Timer B Count Source Select Register 2</td>
<td>TBCS2</td>
<td>00h</td>
</tr>
<tr>
<td>01E9h</td>
<td>Timer B Count Source Select Register 3</td>
<td>TBCS3</td>
<td>X0h</td>
</tr>
<tr>
<td>01EAh</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01EBh</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01ECb</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01EDh</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01EEh</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01F0h</td>
<td>PMCO Function Select Register 0</td>
<td>PMCOCON0</td>
<td>00h</td>
</tr>
<tr>
<td>01F1h</td>
<td>PMCO Function Select Register 1</td>
<td>PMCOCON1</td>
<td>00XX 0000b</td>
</tr>
<tr>
<td>01F2h</td>
<td>PMCO Function Select Register 2</td>
<td>PMCOCON2</td>
<td>0000 00X0b</td>
</tr>
<tr>
<td>01F3h</td>
<td>PMCO Function Select Register 3</td>
<td>PMCOCON3</td>
<td>00h</td>
</tr>
<tr>
<td>01F4h</td>
<td>PMCO Status Register</td>
<td>PMCOSTS</td>
<td>00h</td>
</tr>
<tr>
<td>01F5h</td>
<td>PMCO Interrupt Source Select Register</td>
<td>PMCOINT</td>
<td>00h</td>
</tr>
<tr>
<td>01F6h</td>
<td>PMCO Compare Control Register</td>
<td>PMCOCPF</td>
<td>XXX0 X000b</td>
</tr>
<tr>
<td>01F7h</td>
<td>PMCO Compare Data Register</td>
<td>PMCOCPD</td>
<td>00h</td>
</tr>
<tr>
<td>01F8h</td>
<td>PMCT Function Select Register 0</td>
<td>PMCTCON0</td>
<td>XXXX X000b</td>
</tr>
<tr>
<td>01F9h</td>
<td>PMCT Function Select Register 1</td>
<td>PMCTCON1</td>
<td>XXXX 0X00b</td>
</tr>
<tr>
<td>01FAh</td>
<td>PMCT Function Select Register 2</td>
<td>PMCTCON2</td>
<td>0000 00X0b</td>
</tr>
<tr>
<td>01FBh</td>
<td>PMCT Function Select Register 3</td>
<td>PMCTCON3</td>
<td>00h</td>
</tr>
<tr>
<td>01FCf</td>
<td>PMCT Status Register</td>
<td>PMCTSTS</td>
<td>X000 X00Xb</td>
</tr>
<tr>
<td>01FDh</td>
<td>PMCT Interrupt Source Select Register</td>
<td>PMCTINT</td>
<td>X000 X00Xb</td>
</tr>
<tr>
<td>01FEh</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01FFh</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0200h</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0201h</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0202h</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0203h</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0204h</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0205h</td>
<td>Interrupt Source Select Register 3</td>
<td>IFSR3A</td>
<td>00h</td>
</tr>
<tr>
<td>0206h</td>
<td>Interrupt Source Select Register 2</td>
<td>IFSR2A</td>
<td>00h</td>
</tr>
<tr>
<td>0207h</td>
<td>Interrupt Source Select Register</td>
<td>IFSR</td>
<td>00h</td>
</tr>
<tr>
<td>0208h</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0209h</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>020Ah</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>020Bh</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>020Ch</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>020Dh</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>020Eh</td>
<td>Address Match Interrupt Enable Register</td>
<td>AIER</td>
<td>XXXX XX00b</td>
</tr>
<tr>
<td>020Fh</td>
<td>Address Match Interrupt Enable Register 2</td>
<td>AIER2</td>
<td>XXXX XX00b</td>
</tr>
</tbody>
</table>

Note:
1. The blank areas are reserved. No access is allowed.
<table>
<thead>
<tr>
<th>Address</th>
<th>Register</th>
<th>Symbol</th>
<th>Reset Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0210h</td>
<td>Address Match Interrupt Register 0</td>
<td>RMAD0</td>
<td>00h</td>
</tr>
<tr>
<td>0211h</td>
<td>Address Match Interrupt Register 0</td>
<td>RMAD1</td>
<td>00h</td>
</tr>
<tr>
<td>0212h</td>
<td>X0h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0213h</td>
<td>X0h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0214h</td>
<td>Address Match Interrupt Register 1</td>
<td>RMAD2</td>
<td>00h</td>
</tr>
<tr>
<td>0215h</td>
<td>Address Match Interrupt Register 1</td>
<td>RMAD3</td>
<td>00h</td>
</tr>
<tr>
<td>0216h</td>
<td>X0h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0217h</td>
<td>X0h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0218h</td>
<td>Address Match Interrupt Register 2</td>
<td>RMAD3</td>
<td>00h</td>
</tr>
<tr>
<td>0219h</td>
<td>Address Match Interrupt Register 2</td>
<td>RMAD3</td>
<td>00h</td>
</tr>
<tr>
<td>021Ah</td>
<td>X0h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>021Bh</td>
<td>X0h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>021Ch</td>
<td>Address Match Interrupt Register 3</td>
<td>RMAD3</td>
<td>00h</td>
</tr>
<tr>
<td>021Dh</td>
<td>Address Match Interrupt Register 3</td>
<td>RMAD3</td>
<td>00h</td>
</tr>
<tr>
<td>021Eh</td>
<td>X0h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>021Fh</td>
<td>X0h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0220h</td>
<td>Flash Memory Control Register 0</td>
<td>FMR0</td>
<td>0000 0001b (Other than user boot mode) 0010 0001b (User boot mode)</td>
</tr>
<tr>
<td>0221h</td>
<td>Flash Memory Control Register 1</td>
<td>FMR1</td>
<td>00X0 XX0Xb</td>
</tr>
<tr>
<td>0222h</td>
<td>Flash Memory Control Register 2</td>
<td>FMR2</td>
<td>XXXX 0000b</td>
</tr>
<tr>
<td>0223h</td>
<td>Flash Memory Control Register 3</td>
<td>FMR3</td>
<td>XXXX 0000b</td>
</tr>
<tr>
<td>0224h</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0225h</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0226h</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0227h</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0228h</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0229h</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>022Ah</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>022Bh</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>022Ch</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>022Dh</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>022Eh</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>022Fh</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0230h</td>
<td>Flash Memory Control Register 5</td>
<td>FMR4</td>
<td></td>
</tr>
<tr>
<td>0231h</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0232h</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0233h</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0234h</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0235h</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0236h</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0237h</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0238h</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0239h</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>023Ah</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>023Bh</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>023Ch</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>023Dh</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>023Eh</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>023Fh</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note:
1. The blank areas are reserved. No access is allowed.
Table 4.9 SFR Information (9) (1)

<table>
<thead>
<tr>
<th>Address</th>
<th>Symbol</th>
<th>Reset Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0240h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0241h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0242h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0243h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0244h</td>
<td>UART0 Special Mode Register 4</td>
<td>U0SMR4</td>
</tr>
<tr>
<td>0245h</td>
<td>UART0 Special Mode Register 3</td>
<td>U0SMR3</td>
</tr>
<tr>
<td>0246h</td>
<td>UART0 Special Mode Register 2</td>
<td>U0SMR2</td>
</tr>
<tr>
<td>0247h</td>
<td>UART0 Special Mode Register</td>
<td>U0SMR</td>
</tr>
<tr>
<td>0248h</td>
<td>UART0 Transmit/Receive Mode Register</td>
<td>U0MR</td>
</tr>
<tr>
<td>0249h</td>
<td>UART0 Bit Rate Register</td>
<td>U0BRG</td>
</tr>
<tr>
<td>024Ah</td>
<td>UART0 Transmit Buffer Register</td>
<td>U0TB</td>
</tr>
<tr>
<td>024Bh</td>
<td></td>
<td>XXh</td>
</tr>
<tr>
<td>024Ch</td>
<td>UART0 Transmit/Receive Control Register 0</td>
<td>U0C0</td>
</tr>
<tr>
<td>024Dh</td>
<td>UART0 Transmit/Receive Control Register 1</td>
<td>U0C1</td>
</tr>
<tr>
<td>024 Eh</td>
<td>UART0 Receive Buffer Register</td>
<td>U0RB</td>
</tr>
<tr>
<td>024Fh</td>
<td></td>
<td>XXh</td>
</tr>
<tr>
<td>0250h</td>
<td>UART Transmit/Receive Control Register 2</td>
<td>UCON</td>
</tr>
<tr>
<td>0251h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0252h</td>
<td>UART Clock Select Register</td>
<td>UCLKSEL0</td>
</tr>
<tr>
<td>0253h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0254h</td>
<td>UART1 Special Mode Register 4</td>
<td>U1SMR4</td>
</tr>
<tr>
<td>0255h</td>
<td>UART1 Special Mode Register 3</td>
<td>U1SMR3</td>
</tr>
<tr>
<td>0256h</td>
<td>UART1 Special Mode Register 2</td>
<td>U1SMR2</td>
</tr>
<tr>
<td>0257h</td>
<td>UART1 Special Mode Register</td>
<td>U1SMR</td>
</tr>
<tr>
<td>0258h</td>
<td>UART1 Transmit/Receive Mode Register</td>
<td>U1MR</td>
</tr>
<tr>
<td>0259h</td>
<td>UART1 Bit Rate Register</td>
<td>U1BRG</td>
</tr>
<tr>
<td>025Ah</td>
<td>UART1 Transmit Buffer Register</td>
<td>U1TB</td>
</tr>
<tr>
<td>025Bh</td>
<td></td>
<td>XXh</td>
</tr>
<tr>
<td>025Ch</td>
<td>UART1 Transmit/Receive Control Register 0</td>
<td>U1C0</td>
</tr>
<tr>
<td>025Dh</td>
<td>UART1 Transmit/Receive Control Register 1</td>
<td>U1C1</td>
</tr>
<tr>
<td>025 Eh</td>
<td>UART1 Receive Buffer Register</td>
<td>U1RB</td>
</tr>
<tr>
<td>025Fh</td>
<td></td>
<td>XXh</td>
</tr>
<tr>
<td>0260h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0261h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0262h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0263h</td>
<td>UART2 Special Mode Register 4</td>
<td>U2SMR4</td>
</tr>
<tr>
<td>0264h</td>
<td>UART2 Special Mode Register 3</td>
<td>U2SMR3</td>
</tr>
<tr>
<td>0265h</td>
<td>UART2 Special Mode Register 2</td>
<td>U2SMR2</td>
</tr>
<tr>
<td>0266h</td>
<td>UART2 Special Mode Register</td>
<td>U2SMR</td>
</tr>
<tr>
<td>0267h</td>
<td>UART2 Transmit/Receive Mode Register</td>
<td>U2MR</td>
</tr>
<tr>
<td>0268h</td>
<td>UART2 Bit Rate Register</td>
<td>U2BRG</td>
</tr>
<tr>
<td>026Ah</td>
<td>UART2 Transmit Buffer Register</td>
<td>U2TB</td>
</tr>
<tr>
<td>026Bh</td>
<td></td>
<td>XXh</td>
</tr>
<tr>
<td>026Ch</td>
<td>UART2 Transmit/Receive Control Register 0</td>
<td>U2C0</td>
</tr>
<tr>
<td>026Dh</td>
<td>UART2 Transmit/Receive Control Register 1</td>
<td>U2C1</td>
</tr>
<tr>
<td>026 Eh</td>
<td>UART2 Receive Buffer Register</td>
<td>U2RB</td>
</tr>
<tr>
<td>026Fh</td>
<td></td>
<td>XXh</td>
</tr>
</tbody>
</table>

Note:
1. The blank areas are reserved. No access is allowed.
Table 4.10 SFR Information (10) (1)

<table>
<thead>
<tr>
<th>Address</th>
<th>Register</th>
<th>Symbol</th>
<th>Reset Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0270h</td>
<td>SI/O3 Transmit/Receive Register</td>
<td>S3TRR</td>
<td>XXh</td>
</tr>
<tr>
<td>0271h</td>
<td>SI/O3 Control Register</td>
<td>S3C</td>
<td>0100 0000b</td>
</tr>
<tr>
<td>0272h</td>
<td>SI/O3 Bit Rate Register</td>
<td>S3BRG</td>
<td>XXh</td>
</tr>
<tr>
<td>0273h</td>
<td>SI/O3 Transmit/Receive Register</td>
<td>S4TRR</td>
<td>XXh</td>
</tr>
<tr>
<td>0274h</td>
<td>SI/O4 Control Register</td>
<td>S4C</td>
<td>0100 0000b</td>
</tr>
<tr>
<td>0275h</td>
<td>SI/O4 Bit Rate Register</td>
<td>S4BRG</td>
<td>XXh</td>
</tr>
<tr>
<td>0276h</td>
<td>SI/O3, 4 Control Register 2</td>
<td>S34C2</td>
<td>00XX X0X0b</td>
</tr>
<tr>
<td>0277h</td>
<td>UART5 Special Mode Register 4</td>
<td>U5SMR4</td>
<td>00h</td>
</tr>
<tr>
<td>0278h</td>
<td>UART5 Special Mode Register 3</td>
<td>U5SMR3</td>
<td>000X 0X0Xb</td>
</tr>
<tr>
<td>0279h</td>
<td>UART5 Special Mode Register 2</td>
<td>U5SMR2</td>
<td>X000 0000b</td>
</tr>
<tr>
<td>027Ah</td>
<td>UART5 Special Mode Register</td>
<td>U5SMR</td>
<td>X000 0000b</td>
</tr>
<tr>
<td>027Bh</td>
<td>UART5 Transmit/Receive Mode Register</td>
<td>U5MR</td>
<td>00h</td>
</tr>
<tr>
<td>027Ch</td>
<td>UART5 Transmit Buffer Register</td>
<td>U5TB</td>
<td>00h</td>
</tr>
<tr>
<td>027Dh</td>
<td>UART5 Transmit/Receive Control Register 0</td>
<td>U5C0</td>
<td>0000 1000b</td>
</tr>
<tr>
<td>027Eh</td>
<td>UART5 Transmit/Receive Control Register 1</td>
<td>U5C1</td>
<td>0000 0010b</td>
</tr>
<tr>
<td>027Fh</td>
<td>UART5 Receive Buffer Register</td>
<td>U5RB</td>
<td>XXh</td>
</tr>
<tr>
<td>0280h</td>
<td>UART6 Special Mode Register 4</td>
<td>U6SMR4</td>
<td>00h</td>
</tr>
<tr>
<td>0281h</td>
<td>UART6 Special Mode Register 3</td>
<td>U6SMR3</td>
<td>000X 0X0Xb</td>
</tr>
<tr>
<td>0282h</td>
<td>UART6 Special Mode Register 2</td>
<td>U6SMR2</td>
<td>X000 0000b</td>
</tr>
<tr>
<td>0283h</td>
<td>UART6 Special Mode Register</td>
<td>U6SMR</td>
<td>X000 0000b</td>
</tr>
<tr>
<td>0284h</td>
<td>UART6 Transmit/Receive Mode Register</td>
<td>U6MR</td>
<td>00h</td>
</tr>
<tr>
<td>0285h</td>
<td>UART6 Bit Rate Register</td>
<td>U6BRG</td>
<td>XXh</td>
</tr>
<tr>
<td>0286h</td>
<td>UART6 Transmit Buffer Register</td>
<td>U6TB</td>
<td>XXh</td>
</tr>
<tr>
<td>0287h</td>
<td>UART6 Transmit/Receive Control Register 0</td>
<td>U6C0</td>
<td>0000 1000b</td>
</tr>
<tr>
<td>0288h</td>
<td>UART6 Transmit/Receive Control Register 1</td>
<td>U6C1</td>
<td>0000 0010b</td>
</tr>
<tr>
<td>0289h</td>
<td>UART6 Receive Buffer Register</td>
<td>U6RB</td>
<td>XXh</td>
</tr>
</tbody>
</table>

Note:
1. The blank areas are reserved. No access is allowed.
Table 4.11 SFR Information (11)

<table>
<thead>
<tr>
<th>Address</th>
<th>Register</th>
<th>Symbol</th>
<th>Reset Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>02A0h</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>02A1h</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>02A2h</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>02A3h</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>02A4h</td>
<td>UART7 Special Mode Register 4</td>
<td>U7SMR4</td>
<td>00h</td>
</tr>
<tr>
<td>02A5h</td>
<td>UART7 Special Mode Register 3</td>
<td>U7SMR3</td>
<td>000X XX0Xb</td>
</tr>
<tr>
<td>02A6h</td>
<td>UART7 Special Mode Register 2</td>
<td>U7SMR2</td>
<td>X000 0000b</td>
</tr>
<tr>
<td>02A7h</td>
<td>UART7 Special Mode Register 1</td>
<td>U7SMR1</td>
<td>X000 0000b</td>
</tr>
<tr>
<td>02A8h</td>
<td>UART7 Transmit/Receive Mode Register</td>
<td>U7MR</td>
<td>00h</td>
</tr>
<tr>
<td>02A9h</td>
<td>UART7 Bit Rate Register</td>
<td>U7BRG</td>
<td>XXh</td>
</tr>
<tr>
<td>02AAh</td>
<td>UART7 Transmit Buffer Register</td>
<td>U7TB</td>
<td>XXh</td>
</tr>
<tr>
<td>02ABh</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>02ACh</td>
<td>UART7 Transmit/Receive Control Register 0</td>
<td>U7C0</td>
<td>0000 1000b</td>
</tr>
<tr>
<td>02ADh</td>
<td>UART7 Transmit/Receive Control Register 1</td>
<td>U7C1</td>
<td>0000 0010b</td>
</tr>
<tr>
<td>02AEh</td>
<td>UART7 Receive Buffer Register</td>
<td>U7RB</td>
<td>XXh</td>
</tr>
<tr>
<td>02AFh</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>02B0h</td>
<td>I2C0 Data Shift Register</td>
<td>S00</td>
<td>XXh</td>
</tr>
<tr>
<td>02B1h</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>02B2h</td>
<td>I2C0 Address Register 0</td>
<td>S0D0</td>
<td>0000 0000Xb</td>
</tr>
<tr>
<td>02B3h</td>
<td>I2C0 Control Register 0</td>
<td>S1D0</td>
<td>00h</td>
</tr>
<tr>
<td>02B4h</td>
<td>I2C0 Clock Control Register</td>
<td>S20</td>
<td>00h</td>
</tr>
<tr>
<td>02B5h</td>
<td>I2C0 Start/Stop Condition Control Register</td>
<td>S2D0</td>
<td>0001 1010b</td>
</tr>
<tr>
<td>02B6h</td>
<td>I2C0 Control Register 1</td>
<td>S3D0</td>
<td>0011 0000b</td>
</tr>
<tr>
<td>02B7h</td>
<td>I2C0 Control Register 2</td>
<td>S4D0</td>
<td>00h</td>
</tr>
<tr>
<td>02B8h</td>
<td>I2C0 Status Register 0</td>
<td>S10</td>
<td>0001 0000Xb</td>
</tr>
<tr>
<td>02B9h</td>
<td>I2C0 Status Register 1</td>
<td>S11</td>
<td>XXXX 0000b</td>
</tr>
<tr>
<td>02BAh</td>
<td>I2C0 Address Register 1</td>
<td>S0D1</td>
<td>0000 000Xb</td>
</tr>
<tr>
<td>02BBh</td>
<td>I2C0 Address Register 2</td>
<td>S0D2</td>
<td>0000 0000Xb</td>
</tr>
<tr>
<td>02BCh</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>02BDh</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>02Beh</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>02FFh</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note:

1. The blank areas are reserved. No access is allowed.
Table 4.12 SFR Information (12) (1)

<table>
<thead>
<tr>
<th>Address</th>
<th>Register</th>
<th>Symbol</th>
<th>Reset Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0300h</td>
<td>Timer B3/B4/B5 Count Start Flag</td>
<td>TBSR</td>
<td>000X XXXXxb</td>
</tr>
<tr>
<td>0301h</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0302h</td>
<td>Timer A1-1 Register</td>
<td>TA11</td>
<td>XXh</td>
</tr>
<tr>
<td>0303h</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0304h</td>
<td>Timer A2-1 Register</td>
<td>TA21</td>
<td>XXh</td>
</tr>
<tr>
<td>0305h</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0306h</td>
<td>Timer A4-1 Register</td>
<td>TA41</td>
<td>XXh</td>
</tr>
<tr>
<td>0307h</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0308h</td>
<td>Three-Phase PWM Control Register 0</td>
<td>INVC0</td>
<td>00h</td>
</tr>
<tr>
<td>0309h</td>
<td>Three-Phase PWM Control Register 1</td>
<td>INVC1</td>
<td>00h</td>
</tr>
<tr>
<td>030Ah</td>
<td>Three-Phase Output Buffer Register 0</td>
<td>IDB0</td>
<td>XX11 1111b</td>
</tr>
<tr>
<td>030Bh</td>
<td>Three-Phase Output Buffer Register 1</td>
<td>IDB1</td>
<td>XX11 1111b</td>
</tr>
<tr>
<td>030Ch</td>
<td>Dead Time Timer</td>
<td>DTT</td>
<td>XXh</td>
</tr>
<tr>
<td>030Dh</td>
<td>Timer B2 Interrupt Generation Frequency Set Counter</td>
<td>ICTB2</td>
<td>XXh</td>
</tr>
<tr>
<td>030 Eh</td>
<td>Position-Data-Retain Function Control Register</td>
<td>PDRF</td>
<td>XXXX 0000b</td>
</tr>
<tr>
<td>030Fh</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0310h</td>
<td>Timer B3 Register</td>
<td>TB3</td>
<td>XXh</td>
</tr>
<tr>
<td>0311h</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0312h</td>
<td>Timer B4 Register</td>
<td>TB4</td>
<td>XXh</td>
</tr>
<tr>
<td>0313h</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0314h</td>
<td>Timer B5 Register</td>
<td>TB5</td>
<td>XXh</td>
</tr>
<tr>
<td>0315h</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0316h</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0317h</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0318h</td>
<td>Port Function Control Register</td>
<td>PFCR</td>
<td>0011 1111b</td>
</tr>
<tr>
<td>0319h</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>031Ah</td>
<td>Timer B3 Mode Register</td>
<td>TB3MR</td>
<td>00XX 0000b</td>
</tr>
<tr>
<td>031Ch</td>
<td>Timer B4 Mode Register</td>
<td>TB4MR</td>
<td>00XX 0000b</td>
</tr>
<tr>
<td>031Dh</td>
<td>Timer B5 Mode Register</td>
<td>TB5MR</td>
<td>00XX 0000b</td>
</tr>
<tr>
<td>031 Eh</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>031Fh</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0320h</td>
<td>Count Start Flag</td>
<td>TABSR</td>
<td>00h</td>
</tr>
<tr>
<td>0321h</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0322h</td>
<td>One-Shot Start Flag</td>
<td>ONSF</td>
<td>00h</td>
</tr>
<tr>
<td>0323h</td>
<td>Trigger Select Register</td>
<td>TRGSR</td>
<td>00h</td>
</tr>
<tr>
<td>0324h</td>
<td>Increment/Decrement Flag</td>
<td>UDF</td>
<td>00h</td>
</tr>
<tr>
<td>0325h</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0326h</td>
<td>Timer A0 Register</td>
<td>TA0</td>
<td>XXh</td>
</tr>
<tr>
<td>0327h</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0328h</td>
<td>Timer A1 Register</td>
<td>TA1</td>
<td>XXh</td>
</tr>
<tr>
<td>0329h</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>032Ah</td>
<td>Timer A2 Register</td>
<td>TA2</td>
<td>XXh</td>
</tr>
<tr>
<td>032Bh</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>032Ch</td>
<td>Timer A3 Register</td>
<td>TA3</td>
<td>XXh</td>
</tr>
<tr>
<td>032Dh</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>032 Eh</td>
<td>Timer A4 Register</td>
<td>TA4</td>
<td>XXh</td>
</tr>
<tr>
<td>032Fh</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note:
1. The blank areas are reserved. No access is allowed.
Table 4.13 SFR Information (13) (1)

<table>
<thead>
<tr>
<th>Address</th>
<th>Register</th>
<th>Symbol</th>
<th>Reset Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0330h</td>
<td>Timer B0 Register</td>
<td>TB0</td>
<td>XXh</td>
</tr>
<tr>
<td>0331h</td>
<td>XXh</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0332h</td>
<td>Timer B1 Register</td>
<td>TB1</td>
<td>XXh</td>
</tr>
<tr>
<td>0333h</td>
<td>XXh</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0334h</td>
<td>Timer B2 Register</td>
<td>TB2</td>
<td>XXh</td>
</tr>
<tr>
<td>0335h</td>
<td>XXh</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0336h</td>
<td>Timer A0 Mode Register</td>
<td>TA0MR</td>
<td>00h</td>
</tr>
<tr>
<td>0337h</td>
<td>Timer A1 Mode Register</td>
<td>TA1MR</td>
<td>00h</td>
</tr>
<tr>
<td>0338h</td>
<td>Timer A2 Mode Register</td>
<td>TA2MR</td>
<td>00h</td>
</tr>
<tr>
<td>0339h</td>
<td>Timer A3 Mode Register</td>
<td>TA3MR</td>
<td>00h</td>
</tr>
<tr>
<td>033Ah</td>
<td>Timer A4 Mode Register</td>
<td>TA4MR</td>
<td>00h</td>
</tr>
<tr>
<td>033Bh</td>
<td>Timer B0 Mode Register</td>
<td>TB0MR</td>
<td>00XX 0000b</td>
</tr>
<tr>
<td>033Ch</td>
<td>Timer B1 Mode Register</td>
<td>TB1MR</td>
<td>00XX 0000b</td>
</tr>
<tr>
<td>033Dh</td>
<td>Timer B2 Mode Register</td>
<td>TB2MR</td>
<td>00XX 0000b</td>
</tr>
<tr>
<td>033Eh</td>
<td>Timer B2 Special Mode Register</td>
<td>TB2SC</td>
<td>X000 0000b</td>
</tr>
<tr>
<td>033Fh</td>
<td>XXh</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0340h</td>
<td>Second Data Register</td>
<td>TRRHSEC</td>
<td>0000 0000b</td>
</tr>
<tr>
<td>0341h</td>
<td>Minute Data Register</td>
<td>TRHMIN</td>
<td>0000 0000b</td>
</tr>
<tr>
<td>0342h</td>
<td>Hour Data Register</td>
<td>TRHR</td>
<td>0000 0000b</td>
</tr>
<tr>
<td>0343h</td>
<td>Day-of-the-Week Data Register</td>
<td>TRHWK</td>
<td>0000 0000b</td>
</tr>
<tr>
<td>0344h</td>
<td>Date Data Register</td>
<td>TRHDY</td>
<td>0000 0001b</td>
</tr>
<tr>
<td>0345h</td>
<td>Month Data Register</td>
<td>TRHMON</td>
<td>0000 0001b</td>
</tr>
<tr>
<td>0346h</td>
<td>Year Data Register</td>
<td>TRHYR</td>
<td>0000 0000b</td>
</tr>
<tr>
<td>0347h</td>
<td>Timer RH Control Register</td>
<td>TRHCR</td>
<td>0000 0100b</td>
</tr>
<tr>
<td>0348h</td>
<td>Timer RH Count Source Select Register</td>
<td>TRHCSR</td>
<td>0000 1000b</td>
</tr>
<tr>
<td>0349h</td>
<td>Clock Error Correction Register</td>
<td>TRHADJ</td>
<td>0000 0000b</td>
</tr>
<tr>
<td>034Ah</td>
<td>Timer RH Interrupt Flag Register</td>
<td>TRHIIFR</td>
<td>XXX0 0000b</td>
</tr>
<tr>
<td>034Bh</td>
<td>Timer RH Interrupt Enable Register</td>
<td>TRHIER</td>
<td>0000 0000b</td>
</tr>
<tr>
<td>034Ch</td>
<td>Alarm Minute Register</td>
<td>TRHAMN</td>
<td>0000 0000b</td>
</tr>
<tr>
<td>034Dh</td>
<td>Alarm Hour Register</td>
<td>TRHAHR</td>
<td>0000 0000b</td>
</tr>
<tr>
<td>034Eh</td>
<td>Alarm Day-of-the-Week Register</td>
<td>TRHAWK</td>
<td>0XXX X000b</td>
</tr>
<tr>
<td>034Fh</td>
<td>Timer RH Protect Register</td>
<td>TRHPRC</td>
<td>0XX XXXXb</td>
</tr>
<tr>
<td>0350h</td>
<td>CEC Function Control Register 1</td>
<td>CEC1</td>
<td>XXXX X000b</td>
</tr>
<tr>
<td>0351h</td>
<td>CEC Function Control Register 2</td>
<td>CEC2</td>
<td>00h</td>
</tr>
<tr>
<td>0352h</td>
<td>CEC Function Control Register 3</td>
<td>CEC3</td>
<td>XXXX 0000b</td>
</tr>
<tr>
<td>0353h</td>
<td>CEC Function Control Register 4</td>
<td>CEC4</td>
<td>00h</td>
</tr>
<tr>
<td>0354h</td>
<td>CEC Flag Register</td>
<td>CECFLG</td>
<td>00h</td>
</tr>
<tr>
<td>0355h</td>
<td>CEC Interrupt Source Select Register</td>
<td>CISEL</td>
<td>00h</td>
</tr>
<tr>
<td>0356h</td>
<td>CEC Transmit Buffer Register 1</td>
<td>CCTB1</td>
<td>00h</td>
</tr>
<tr>
<td>0357h</td>
<td>CEC Transmit Buffer Register 2</td>
<td>CCBT2</td>
<td>XXXX XX00b</td>
</tr>
<tr>
<td>0358h</td>
<td>CEC Receive Buffer Register 1</td>
<td>CCRB1</td>
<td>00h</td>
</tr>
<tr>
<td>0359h</td>
<td>CEC Receive Buffer Register 2</td>
<td>CCRB2</td>
<td>XXXX X000b</td>
</tr>
<tr>
<td>035Ah</td>
<td>CEC Receive Follower Address Set Register 1</td>
<td>CRADRI1</td>
<td>00h</td>
</tr>
<tr>
<td>035Bh</td>
<td>CEC Receive Follower Address Set Register 2</td>
<td>CRADRI2</td>
<td>00h</td>
</tr>
<tr>
<td>035Ch</td>
<td>XXh</td>
<td></td>
<td></td>
</tr>
<tr>
<td>035Dh</td>
<td>XXh</td>
<td></td>
<td></td>
</tr>
<tr>
<td>035Eh</td>
<td>XXh</td>
<td></td>
<td></td>
</tr>
<tr>
<td>035Fh</td>
<td>XXh</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note:
1. The blank areas are reserved. No access is allowed.
Table 4.14 SFR Information (14) (1)

<table>
<thead>
<tr>
<th>Address</th>
<th>Register</th>
<th>Symbol</th>
<th>Reset Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0360h</td>
<td>Pull-Up Control Register 0</td>
<td>PUR0</td>
<td>00h</td>
</tr>
<tr>
<td>0361h</td>
<td>Pull-Up Control Register 1</td>
<td>PUR1</td>
<td>0000 0000b(2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0000 0010b</td>
</tr>
<tr>
<td>0362h</td>
<td>Pull-Up Control Register 2</td>
<td>PUR2</td>
<td>00h</td>
</tr>
<tr>
<td>0363h</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0364h</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0365h</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0366h</td>
<td>Port Control Register</td>
<td>PCR</td>
<td>0000 00XX0b</td>
</tr>
<tr>
<td>0367h</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0368h</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0369h</td>
<td>NMI/SD Digital Filter Register</td>
<td>NMIDF</td>
<td>XXXX X000b</td>
</tr>
<tr>
<td>036Ah</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>036Bh</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>036Ch</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>036Dh</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>036 Eh</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>036Fh</td>
<td>PWM Control Register 0</td>
<td>PWMCON0</td>
<td>00h</td>
</tr>
<tr>
<td>0371h</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0372h</td>
<td>PWM0 Prescaler</td>
<td>PWMPRE0</td>
<td>00h</td>
</tr>
<tr>
<td>0373h</td>
<td>PWM0 Register</td>
<td>PWMREG0</td>
<td>00h</td>
</tr>
<tr>
<td>0374h</td>
<td>PWM1 Prescaler</td>
<td>PWMPRE1</td>
<td>00h</td>
</tr>
<tr>
<td>0375h</td>
<td>PWM1 Register</td>
<td>PWMREG1</td>
<td>00h</td>
</tr>
<tr>
<td>0376h</td>
<td>PWM Control Register 1</td>
<td>PWMCON1</td>
<td>00h</td>
</tr>
<tr>
<td>0377h</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0378h</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0379h</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>037 Ah</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>037 Bh</td>
<td>Count Source Protection Mode Register</td>
<td>CSPR</td>
<td>00h (3)</td>
</tr>
<tr>
<td>037 Dh</td>
<td>Watchdog Timer Refresh Register</td>
<td>WDTR</td>
<td>XXh</td>
</tr>
<tr>
<td>037 Eh</td>
<td>Watchdog Timer Start Register</td>
<td>WDTS</td>
<td>XXh</td>
</tr>
<tr>
<td>037 Fh</td>
<td>Watchdog Timer Control Register</td>
<td>WDC</td>
<td>00XX XXXXb</td>
</tr>
<tr>
<td>0380h</td>
<td>to</td>
<td></td>
<td></td>
</tr>
<tr>
<td>038 Fh</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:

1. The blank areas are reserved. No access is allowed.
2. Values after hardware reset, power-on reset, or voltage monitor 0 reset are as follows:
 - 00000000b when a low-level signal is input to the CNVSS pin
 - 0000010b when a high-level signal is input to the CNVSS pin
 Values after voltage monitor 1 reset, voltage monitor 2 reset, software reset, watchdog timer reset, or oscillation stop detect reset are as follows:
 - 00000000b when bits PM01 and PM00 in the PM0 register are 00b (single-chip mode).
 - 0000010b when bits PM01 and PM00 in the PM0 register are 01b (memory expansion mode) or 11b (microprocessor mode).
3. When the CSPROINI bit in the OFS1 address is 0, the reset value is 1000 0000b.
Table 4.15 SFR Information (15) (1)

<table>
<thead>
<tr>
<th>Address</th>
<th>Register</th>
<th>Symbol</th>
<th>Reset Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0390h</td>
<td>DMA2 Source Select Register</td>
<td>DM2SL</td>
<td>00h</td>
</tr>
<tr>
<td>0391h</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0392h</td>
<td>DMA3 Source Select Register</td>
<td>DM3SL</td>
<td>00h</td>
</tr>
<tr>
<td>0393h</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0394h</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0395h</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0396h</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0397h</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0398h</td>
<td>DMA0 Source Select Register</td>
<td>DM0SL</td>
<td>00h</td>
</tr>
<tr>
<td>0399h</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>039Ah</td>
<td>DMA1 Source Select Register</td>
<td>DM1SL</td>
<td>00h</td>
</tr>
<tr>
<td>039Bh</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>039Ch</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>039Dh</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>039 Eh</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>039Fh</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>03A0h</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>03A1h</td>
<td>Open-Circuit Detection Assist Function Register</td>
<td>AINRST</td>
<td>XX00 XXXXb</td>
</tr>
<tr>
<td>03A2h</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>03A3h</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>03A4h</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>03A5h</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>03A6h</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>03A7h</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>03A8h</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>03A9h</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>03AAh</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>03ABh</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>03ACh</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>03ADh</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>03AEh</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>03AFh</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>03B0h</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>03B1h</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>03B2h</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>03B3h</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>03B4h</td>
<td>SFR Snoop Address Register</td>
<td>CRCSAR</td>
<td>XXXX XXXXb</td>
</tr>
<tr>
<td>03B5h</td>
<td></td>
<td></td>
<td>00XX XXXXb</td>
</tr>
<tr>
<td>03B6h</td>
<td>CRC Mode Register</td>
<td>CRCMR</td>
<td>0XXX XXX0b</td>
</tr>
<tr>
<td>03B7h</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>03B8h</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>03B9h</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>03BAh</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>03BBh</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>03BCh</td>
<td>CRC Data Register</td>
<td>CRCD</td>
<td>XXh</td>
</tr>
<tr>
<td>03BDh</td>
<td></td>
<td></td>
<td>XXh</td>
</tr>
<tr>
<td>03BEh</td>
<td>CRC Input Register</td>
<td>CRCIN</td>
<td>XXh</td>
</tr>
<tr>
<td>03BFh</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note:
1. The blank areas are reserved. No access is allowed.
Table 4.16 SFR Information (16) (1)

<table>
<thead>
<tr>
<th>Address</th>
<th>Register</th>
<th>Symbol</th>
<th>Reset Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>03C0h</td>
<td>A/D Register 0</td>
<td>AD0</td>
<td>XXXX XXXXb</td>
</tr>
<tr>
<td>03C1h</td>
<td></td>
<td></td>
<td>0000 0000Xb</td>
</tr>
<tr>
<td>03C2h</td>
<td>A/D Register 1</td>
<td>AD1</td>
<td>XXXX XXXXb</td>
</tr>
<tr>
<td>03C3h</td>
<td></td>
<td></td>
<td>0000 0000Xb</td>
</tr>
<tr>
<td>03C4h</td>
<td>A/D Register 2</td>
<td>AD2</td>
<td>XXXX XXXXb</td>
</tr>
<tr>
<td>03C5h</td>
<td></td>
<td></td>
<td>0000 0000Xb</td>
</tr>
<tr>
<td>03C6h</td>
<td>A/D Register 3</td>
<td>AD3</td>
<td>XXXX XXXXb</td>
</tr>
<tr>
<td>03C7h</td>
<td></td>
<td></td>
<td>0000 0000Xb</td>
</tr>
<tr>
<td>03C8h</td>
<td>A/D Register 4</td>
<td>AD4</td>
<td>XXXX XXXXb</td>
</tr>
<tr>
<td>03C9h</td>
<td></td>
<td></td>
<td>0000 0000Xb</td>
</tr>
<tr>
<td>03CAh</td>
<td>A/D Register 5</td>
<td>AD5</td>
<td>XXXX XXXXb</td>
</tr>
<tr>
<td>03CBh</td>
<td></td>
<td></td>
<td>0000 0000Xb</td>
</tr>
<tr>
<td>03CCh</td>
<td>A/D Register 6</td>
<td>AD6</td>
<td>XXXX XXXXb</td>
</tr>
<tr>
<td>03CDh</td>
<td></td>
<td></td>
<td>0000 0000Xb</td>
</tr>
<tr>
<td>03CEh</td>
<td>A/D Register 7</td>
<td>AD7</td>
<td>XXXX XXXXb</td>
</tr>
<tr>
<td>03CFh</td>
<td></td>
<td></td>
<td>0000 0000Xb</td>
</tr>
<tr>
<td>03D0h</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>03D1h</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>03D2h</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>03D3h</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>03D4h</td>
<td>A/D Control Register 2</td>
<td>ADCON2</td>
<td>0000 X00Xb</td>
</tr>
<tr>
<td>03D5h</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>03D6h</td>
<td>A/D Control Register 0</td>
<td>ADCON0</td>
<td>0000 0XXXb</td>
</tr>
<tr>
<td>03D7h</td>
<td>A/D Control Register 1</td>
<td>ADCON1</td>
<td>0000 0000b</td>
</tr>
<tr>
<td>03D8h</td>
<td>D/A0 Register</td>
<td>DA0</td>
<td>00h</td>
</tr>
<tr>
<td>03D9h</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>03DAh</td>
<td>D/A1 Register</td>
<td>DA1</td>
<td>00h</td>
</tr>
<tr>
<td>03DBh</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>03DCh</td>
<td>D/A Control Register</td>
<td>DACON</td>
<td>00h</td>
</tr>
<tr>
<td>03DDh</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>03DEh</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>03DFh</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>03E0h</td>
<td>Port P0 Register</td>
<td>P0</td>
<td>XXh</td>
</tr>
<tr>
<td>03E1h</td>
<td>Port P1 Register</td>
<td>P1</td>
<td>XXh</td>
</tr>
<tr>
<td>03E2h</td>
<td>Port P0 Direction Register</td>
<td>PD0</td>
<td>00h</td>
</tr>
<tr>
<td>03E3h</td>
<td>Port P1 Direction Register</td>
<td>PD1</td>
<td>00h</td>
</tr>
<tr>
<td>03E4h</td>
<td>Port P2 Register</td>
<td>P2</td>
<td>XXh</td>
</tr>
<tr>
<td>03E5h</td>
<td>Port P3 Register</td>
<td>P3</td>
<td>XXh</td>
</tr>
<tr>
<td>03E6h</td>
<td>Port P2 Direction Register</td>
<td>PD2</td>
<td>00h</td>
</tr>
<tr>
<td>03E7h</td>
<td>Port P3 Direction Register</td>
<td>PD3</td>
<td>00h</td>
</tr>
<tr>
<td>03E8h</td>
<td>Port P4 Register</td>
<td>P4</td>
<td>XXh</td>
</tr>
<tr>
<td>03E9h</td>
<td>Port P5 Register</td>
<td>P5</td>
<td>XXh</td>
</tr>
<tr>
<td>03EAh</td>
<td>Port P4 Direction Register</td>
<td>PD4</td>
<td>00h</td>
</tr>
<tr>
<td>03EBh</td>
<td>Port P5 Direction Register</td>
<td>PD5</td>
<td>00h</td>
</tr>
<tr>
<td>03ECh</td>
<td>Port P6 Register</td>
<td>P6</td>
<td>XXh</td>
</tr>
<tr>
<td>03EDh</td>
<td>Port P7 Register</td>
<td>P7</td>
<td>XXh</td>
</tr>
<tr>
<td>03EEh</td>
<td>Port P6 Direction Register</td>
<td>PD6</td>
<td>00h</td>
</tr>
<tr>
<td>03EFh</td>
<td>Port P7 Direction Register</td>
<td>PD7</td>
<td>00h</td>
</tr>
</tbody>
</table>

Note:
1. The blank areas are reserved. No access is allowed.
Table 4.17 SFR Information (17) *(1)*

<table>
<thead>
<tr>
<th>Address</th>
<th>Register</th>
<th>Symbol</th>
<th>Reset Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>03F0h</td>
<td>Port P8 Register</td>
<td>P8</td>
<td>XXh</td>
</tr>
<tr>
<td>03F1h</td>
<td>Port P9 Register</td>
<td>P9</td>
<td>XXh</td>
</tr>
<tr>
<td>03F2h</td>
<td>Port P8 Direction Register</td>
<td>PD8</td>
<td>00h</td>
</tr>
<tr>
<td>03F3h</td>
<td>Port P9 Direction Register</td>
<td>PD9</td>
<td>00h</td>
</tr>
<tr>
<td>03F4h</td>
<td>Port P10 Register</td>
<td>P10</td>
<td>XXh</td>
</tr>
<tr>
<td>03F5h</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>03F6h</td>
<td>Port P10 Direction Register</td>
<td>PD10</td>
<td>00h</td>
</tr>
<tr>
<td>03F7h</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>03F8h</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>03F9h</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>03FAh</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>03FBh</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>03FCh</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>03FDh</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>03FEh</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>03FFh</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note:
1. The blank areas are reserved. No access is allowed.
Table 4.18 SFR Information (18) (1)

<table>
<thead>
<tr>
<th>Address</th>
<th>Register</th>
<th>Symbol</th>
<th>Reset Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>D080h</td>
<td>PMC0 Header Pattern Set Register (Min)</td>
<td>PMC0HDPMIN</td>
<td>0000 0000b</td>
</tr>
<tr>
<td>D081h</td>
<td></td>
<td>XXXX X000b</td>
<td></td>
</tr>
<tr>
<td>D082h</td>
<td>PMC0 Header Pattern Set Register (Max)</td>
<td>PMC0HDPMAX</td>
<td>0000 0000b</td>
</tr>
<tr>
<td>D083h</td>
<td></td>
<td>XXXX X000b</td>
<td></td>
</tr>
<tr>
<td>D084h</td>
<td>PMC0 Data 0 Pattern Set Register (Min)</td>
<td>PMC0D0PMIN</td>
<td>00h</td>
</tr>
<tr>
<td>D085h</td>
<td>PMC0 Data 0 Pattern Set Register (Max)</td>
<td>PMC0D0PMAX</td>
<td>00h</td>
</tr>
<tr>
<td>D086h</td>
<td>PMC0 Data 1 Pattern Set Register (Min)</td>
<td>PMC0D1PMIN</td>
<td>00h</td>
</tr>
<tr>
<td>D087h</td>
<td>PMC0 Data 1 Pattern Set Register (Max)</td>
<td>PMC0D1PMAX</td>
<td>00h</td>
</tr>
<tr>
<td>D088h</td>
<td>PMC0 Measurements Register</td>
<td>PMC0TIM</td>
<td>00h</td>
</tr>
<tr>
<td>D089h</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D08Ah</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D08Bh</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D08Ch</td>
<td>PMC0 Receive Data Store Register 0</td>
<td>PMC0DAT0</td>
<td>00h</td>
</tr>
<tr>
<td>D08Dh</td>
<td>PMC0 Receive Data Store Register 1</td>
<td>PMC0DAT1</td>
<td>00h</td>
</tr>
<tr>
<td>D08 Eh</td>
<td>PMC0 Receive Data Store Register 2</td>
<td>PMC0DAT2</td>
<td>00h</td>
</tr>
<tr>
<td>D08Fh</td>
<td>PMC0 Receive Data Store Register 3</td>
<td>PMC0DAT3</td>
<td>00h</td>
</tr>
<tr>
<td>D090h</td>
<td>PMC0 Receive Data Store Register 4</td>
<td>PMC0DAT4</td>
<td>00h</td>
</tr>
<tr>
<td>D091h</td>
<td>PMC0 Receive Data Store Register 5</td>
<td>PMC0DAT5</td>
<td>00h</td>
</tr>
<tr>
<td>D092h</td>
<td>PMC0 Receive Bit Count Register</td>
<td>PMC0RBIT</td>
<td>XX00 0000b</td>
</tr>
<tr>
<td>D093h</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D094h</td>
<td>PMC1 Header Pattern Set Register (Min)</td>
<td>PMC1HDPMIN</td>
<td>0000 0000b</td>
</tr>
<tr>
<td>D095h</td>
<td></td>
<td>XXXX X000b</td>
<td></td>
</tr>
<tr>
<td>D096h</td>
<td>PMC1 Header Pattern Set Register (Max)</td>
<td>PMC1HDPMAX</td>
<td>0000 0000b</td>
</tr>
<tr>
<td>D097h</td>
<td></td>
<td>XXXX X000b</td>
<td></td>
</tr>
<tr>
<td>D098h</td>
<td>PMC1 Data 0 Pattern Set Register (Min)</td>
<td>PMC1D0PMIN</td>
<td>00h</td>
</tr>
<tr>
<td>D099h</td>
<td>PMC1 Data 0 Pattern Set Register (Max)</td>
<td>PMC1D0PMAX</td>
<td>00h</td>
</tr>
<tr>
<td>D09 Ah</td>
<td>PMC1 Data 1 Pattern Set Register (Min)</td>
<td>PMC1D1PMIN</td>
<td>00h</td>
</tr>
<tr>
<td>D09Bh</td>
<td>PMC1 Data 1 Pattern Set Register (Max)</td>
<td>PMC1D1PMAX</td>
<td>00h</td>
</tr>
<tr>
<td>D09Ch</td>
<td>PMC1 Measurements Register</td>
<td>PMC1TIM</td>
<td>00h</td>
</tr>
<tr>
<td>D09Dh</td>
<td></td>
<td>00h</td>
<td></td>
</tr>
<tr>
<td>D09 Eh</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D09Fh</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note:
1. The blank areas are reserved. No access is allowed.
4.2 Notes on SFRs

4.2.1 Register Settings

Table 4.19 lists Registers with Write-Only Bits and registers whose function differs between reading and writing. Set these registers with immediate values. Do not use read-modify-write instructions. When establishing the next value by altering the existing value, write the existing value to the RAM as well as to the register. Transfer the next value to the register after making changes in the RAM. Read-modify-write instructions can be used when writing to the no register bits.

<table>
<thead>
<tr>
<th>Address</th>
<th>Register</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>0249h</td>
<td>UART0 Bit Rate Register</td>
<td>U0BRG</td>
</tr>
<tr>
<td>024Bh to 024Ah</td>
<td>UART0 Transmit Buffer Register</td>
<td>U0TB</td>
</tr>
<tr>
<td>0259h</td>
<td>UART1 Bit Rate Register</td>
<td>U1BRG</td>
</tr>
<tr>
<td>025Bh to 025Ah</td>
<td>UART1 Transmit Buffer Register</td>
<td>U1TB</td>
</tr>
<tr>
<td>0269h</td>
<td>UART2 Bit Rate Register</td>
<td>U2BRG</td>
</tr>
<tr>
<td>026Bh to 026Ah</td>
<td>UART2 Transmit Buffer Register</td>
<td>U2TB</td>
</tr>
<tr>
<td>0273h</td>
<td>SI/O3 Bit Rate Register</td>
<td>S3BRG</td>
</tr>
<tr>
<td>0277h</td>
<td>SI/O4 Bit Rate Register</td>
<td>S4BRG</td>
</tr>
<tr>
<td>0289h</td>
<td>UART5 Bit Rate Register</td>
<td>U5BRG</td>
</tr>
<tr>
<td>028Bh to 028Ah</td>
<td>UART5 Transmit Buffer Register</td>
<td>U5TB</td>
</tr>
<tr>
<td>0299h</td>
<td>UART6 Bit Rate Register</td>
<td>U6BRG</td>
</tr>
<tr>
<td>029Bh to 029Ah</td>
<td>UART6 Transmit Buffer Register</td>
<td>U6TB</td>
</tr>
<tr>
<td>02A9h</td>
<td>UART7 Bit Rate Register</td>
<td>U7BRG</td>
</tr>
<tr>
<td>02ABh to 02AAh</td>
<td>UART7 Transmit Buffer Register</td>
<td>U7TB</td>
</tr>
<tr>
<td>02B6h</td>
<td>I2C0 Control Register 1</td>
<td>S3D0</td>
</tr>
<tr>
<td>02B8h</td>
<td>I2C0 Status Register 0</td>
<td>S10</td>
</tr>
<tr>
<td>0303h to 0302h</td>
<td>Timer A1-1 Register</td>
<td>TA11</td>
</tr>
<tr>
<td>0305h to 0304h</td>
<td>Timer A2-1 Register</td>
<td>TA21</td>
</tr>
<tr>
<td>0307h to 0306h</td>
<td>Timer A4-1 Register</td>
<td>TA41</td>
</tr>
<tr>
<td>030Ah</td>
<td>Three-Phase Output Buffer Register 0</td>
<td>IDB0</td>
</tr>
<tr>
<td>030Bh</td>
<td>Three-Phase Output Buffer Register 1</td>
<td>IDB1</td>
</tr>
<tr>
<td>030Ch</td>
<td>Dead Time Timer</td>
<td>DTT</td>
</tr>
<tr>
<td>030Dh</td>
<td>Timer B2 Interrupt Generation Frequency Set Counter</td>
<td>ICTB2</td>
</tr>
<tr>
<td>0327h to 0326h</td>
<td>Timer A0 Register</td>
<td>TA0</td>
</tr>
<tr>
<td>0329h to 0328h</td>
<td>Timer A1 Register</td>
<td>TA1</td>
</tr>
<tr>
<td>032Bh to 032Ah</td>
<td>Timer A2 Register</td>
<td>TA2</td>
</tr>
<tr>
<td>032Dh to 032Ch</td>
<td>Timer A3 Register</td>
<td>TA3</td>
</tr>
<tr>
<td>032Fh to 032Eh</td>
<td>Timer A4 Register</td>
<td>TA4</td>
</tr>
<tr>
<td>037Dh</td>
<td>Watchdog Timer Refresh Register</td>
<td>WDTR</td>
</tr>
<tr>
<td>037Eh</td>
<td>Watchdog Timer Start Register</td>
<td>WDTS</td>
</tr>
</tbody>
</table>
Table 4.20 Read-Modify-Write Instructions

<table>
<thead>
<tr>
<th>Function</th>
<th>Mnemonic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transfer</td>
<td>MOVDir</td>
</tr>
<tr>
<td>Bit processing</td>
<td>BCLR, BMCnd, BNOT, BSET, BTSTC, and BTSTS</td>
</tr>
<tr>
<td>Shifting</td>
<td>ROLC, RORC, ROT, SHA, and SHL</td>
</tr>
<tr>
<td>Arithmetic operation</td>
<td>ABS, ADC, ADCF, ADD, DEC, DIV, DIVU, DIVX, EXTS, INC, MUL, MULU, NEG, SBB, and SUB</td>
</tr>
<tr>
<td>Decimal operation</td>
<td>DADC, DADD, DSBB, and DSUB</td>
</tr>
<tr>
<td>Logical operation</td>
<td>AND, NOT, OR, and XOR</td>
</tr>
<tr>
<td>Jump</td>
<td>ADJNZ, SBJNZ</td>
</tr>
</tbody>
</table>
5. Electrical Characteristics

5.1 Electrical Characteristics (Common to 1.8 V, 3 V, and 5 V)

5.1.1 Absolute Maximum Rating

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Condition</th>
<th>Rated Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>VCC1</td>
<td>Supply voltage</td>
<td>VCC1 = AVCC</td>
<td>-0.3 to 6.5</td>
<td>V</td>
</tr>
<tr>
<td>VCC2</td>
<td>Supply voltage</td>
<td>VCC1 = AVCC</td>
<td>-0.3 to VCC1 + 0.1 (1)</td>
<td>V</td>
</tr>
<tr>
<td>AVCC</td>
<td>Analog supply voltage</td>
<td>VCC1 = AVCC</td>
<td>-0.3 to 6.5</td>
<td>V</td>
</tr>
<tr>
<td>VREF</td>
<td>Analog reference voltage</td>
<td>VCC1 = AVCC</td>
<td>-0.3 to VCC1 + 0.1 (1)</td>
<td>V</td>
</tr>
<tr>
<td>V1</td>
<td>Input voltage</td>
<td>RESET, CNVSS, BYTE, P6_0 to P6_7, P7_2 to P7_7, P8_0 to P8_4, P8_6, P8_7, P9_0 to P9_7, P10_0 to P10_7, XIN</td>
<td>-0.3 to VCC1 + 0.3 (1)</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7</td>
<td>-0.3 to VCC2 + 0.3 (1)</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P7_0, P7_1, P8_5</td>
<td>-0.3 to 6.5</td>
<td>V</td>
</tr>
<tr>
<td>VO</td>
<td>Output voltage</td>
<td>P6_0 to P6_7, P7_2 to P7_7, P8_0 to P8_4, P8_6, P8_7, P9_0 to P9_7, P10_0 to P10_7, XOUT</td>
<td>-0.3 to VCC1 + 0.3 (1)</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7</td>
<td>-0.3 to VCC2 + 0.3 (1)</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P7_0, P7_1, P8_5</td>
<td>-0.3 to 6.5</td>
<td>V</td>
</tr>
<tr>
<td>Pd</td>
<td>Power consumption</td>
<td>-40°C < Topr ≤ 85°C</td>
<td>300</td>
<td>mW</td>
</tr>
<tr>
<td>Topr</td>
<td>Operating temperature</td>
<td>When the MCU is operating</td>
<td>-20 to 85/-40 to 85</td>
<td>°C</td>
</tr>
<tr>
<td></td>
<td>Flash program erase</td>
<td>Program area</td>
<td>-20 to 85/-40 to 85</td>
<td>°C</td>
</tr>
<tr>
<td></td>
<td>Data area</td>
<td>-20 to 85/-40 to 85</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>Tstg</td>
<td>Storage temperature</td>
<td></td>
<td>-65 to 150</td>
<td>°C</td>
</tr>
</tbody>
</table>

Note:
1. Maximum value is 6.5 V.
5.1.2 Recommended Operating Conditions

Table 5.2 Recommended Operating Conditions (1/4)

$V_{CC1} = V_{CC2} = 1.8$ to 5.5 V at $T_{opr} = -20^\circ C$ to 85°C unless otherwise specified.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Standard Unit</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{CC1}</td>
<td>Supply voltage</td>
<td>CEC function is not used ($V_{CC1} \geq V_{CC2}$)</td>
<td>2.7</td>
<td>5.5</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CEC function is not used ($V_{CC1} = V_{CC2}$)</td>
<td>1.8</td>
<td>5.5</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CEC function is used</td>
<td>2.7</td>
<td>3.63</td>
<td>V</td>
</tr>
<tr>
<td>V_{CC2}</td>
<td>Supply voltage</td>
<td>$V_{CC1} \geq 2.7$</td>
<td>2.7</td>
<td>V_{CC1}</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{CC1} < 2.7$</td>
<td>V_{CC1}</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>AV_{CC}</td>
<td>Analog supply voltage</td>
<td></td>
<td>V_{CC1}</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>V_{SS}</td>
<td>Supply voltage</td>
<td></td>
<td>0</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>AV_{SS}</td>
<td>Analog supply voltage</td>
<td></td>
<td>0</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>V_{IH}</td>
<td>High input voltage</td>
<td>$P3_1$ to $P3_7$, $P4_0$ to $P4_7$, $P5_0$ to $P5_7$</td>
<td>$2.7 \leq V_{CC1} \leq 5.5$ V</td>
<td>$0.8V_{CC2}$</td>
<td>V_{CC2}</td>
</tr>
<tr>
<td></td>
<td></td>
<td>~</td>
<td>$1.8 \leq V_{CC1} < 2.7$ V</td>
<td>$0.85V_{CC2}$</td>
<td>V_{CC2}</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$P0_0$ to $P0_7$, $P1_0$ to $P1_7$, $P2_0$ to $P2_7$, $P3_0$</td>
<td>$2.7 \leq V_{CC1} \leq 5.5$ V</td>
<td>$0.8V_{CC2}$</td>
<td>V_{CC2}</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(in single-chip mode)</td>
<td>$1.8 \leq V_{CC1} < 2.7$ V</td>
<td>$0.85V_{CC2}$</td>
<td>V_{CC2}</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$P0_0$ to $P0_7$, $P1_0$ to $P1_7$, $P2_0$ to $P2_7$, $P3_0$</td>
<td>$2.7 \leq V_{CC1} \leq 5.5$ V</td>
<td>$0.5V_{CC2}$</td>
<td>V_{CC2}</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(data input in memory expansion and microprocessor modes)</td>
<td>$1.8 \leq V_{CC1} < 2.7$ V</td>
<td>$0.55V_{CC2}$</td>
<td>V_{CC2}</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$P6_0$ to $P6_7$, $P7_2$ to $P7_7$, $P8_0$ to $P8_4$, $P8_6$, $P8_7$, $P9_0$ to $P9_7$, $P10_0$ to $P10_7$, XIN, $RESET$, $CNVSS$, $BYTE$</td>
<td>$2.7 \leq V_{CC1} \leq 5.5$ V</td>
<td>$0.8V_{CC1}$</td>
<td>V_{CC1}</td>
</tr>
<tr>
<td></td>
<td></td>
<td>~</td>
<td>$1.8 \leq V_{CC1} < 2.7$ V</td>
<td>$0.85V_{CC1}$</td>
<td>V_{CC1}</td>
</tr>
<tr>
<td></td>
<td>$P7_0$, $P7_1$, $P8_5$</td>
<td>$2.7 \leq V_{CC1} \leq 5.5$ V</td>
<td>$0.8V_{CC1}$</td>
<td>6.5</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>~</td>
<td>$1.8 \leq V_{CC1} < 2.7$ V</td>
<td>$0.85V_{CC1}$</td>
<td>6.5</td>
</tr>
<tr>
<td></td>
<td>CEC</td>
<td></td>
<td></td>
<td>$0.7V_{CC1}$</td>
<td>V</td>
</tr>
<tr>
<td>V_{IL}</td>
<td>Low input voltage</td>
<td>$P3_1$ to $P3_7$, $P4_0$ to $P4_7$, $P5_0$ to $P5_7$</td>
<td></td>
<td>0</td>
<td>$0.2V_{CC2}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$P0_0$ to $P0_7$, $P1_0$ to $P1_7$, $P2_0$ to $P2_7$, $P3_0$</td>
<td></td>
<td>0</td>
<td>$0.2V_{CC2}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(in single-chip mode)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$P0_0$ to $P0_7$, $P1_0$ to $P1_7$, $P2_0$ to $P2_7$, $P3_0$</td>
<td></td>
<td>0</td>
<td>$0.16V_{CC2}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(data input in memory expansion and microprocessor mode)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$P6_0$ to $P6_7$, $P7_0$ to $P7_7$, $P8_0$ to $P8_7$, $P9_0$ to $P9_7$, $P10_0$ to $P10_7$, XIN, $RESET$, $CNVSS$, $BYTE$</td>
<td></td>
<td></td>
<td>0</td>
<td>$0.2V_{CC1}$</td>
</tr>
<tr>
<td></td>
<td>CEC</td>
<td></td>
<td></td>
<td></td>
<td>$0.26V_{CC1}$</td>
</tr>
</tbody>
</table>

R01DS0033EJ0220 Rev.2.20 Page 50 of 115

Nov 01, 2012
Table 5.3 Recommended Operating Conditions (2/4)

$V_{CC1} = V_{CC2} = 1.8$ to 5.5 V at $T_{opx} = -20°C$ to $85°C$/$-40°C$ to $85°C$ unless otherwise specified.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Standard</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>$I_{OH(sum)}$</td>
<td>High peak output current (100-pin package)</td>
<td>$V_{CC1}, V_{CC2} \geq 2.7$ V</td>
<td>Sum of $I_{OH(peak)}$ at P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7</td>
</tr>
<tr>
<td>$I_{OH(sum)}$</td>
<td>High peak output current (100-pin package)</td>
<td>$V_{CC1}, V_{CC2} < 2.7$ V</td>
<td>Sum of $I_{OH(peak)}$ at P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7</td>
</tr>
<tr>
<td>$I_{OH(peak)}$</td>
<td>High peak output current</td>
<td>$V_{CC1}, V_{CC2} \geq 2.7$ V</td>
<td>P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_2 to P7_7, P8_0 to P8_4, P8_6, P8_7, P9_0 to P9_7, P10_0 to P10_7</td>
</tr>
<tr>
<td>$I_{OH(peak)}$</td>
<td>High peak output current</td>
<td>$V_{CC1}, V_{CC2} < 2.7$ V</td>
<td>P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_2 to P7_7, P8_0 to P8_4, P8_6, P8_7, P9_0 to P9_7, P10_0 to P10_7</td>
</tr>
<tr>
<td>$I_{OH(avg)}$</td>
<td>High average output current (1)</td>
<td>$V_{CC1}, V_{CC2} \geq 2.7$ V</td>
<td>P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_2 to P7_7, P8_0 to P8_4, P8_6, P8_7, P9_0 to P9_7, P10_0 to P10_7</td>
</tr>
<tr>
<td>$I_{OH(avg)}$</td>
<td>High average output current (1)</td>
<td>$V_{CC1}, V_{CC2} < 2.7$ V</td>
<td>P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_2 to P7_7, P8_0 to P8_4, P8_6, P8_7, P9_0 to P9_7, P10_0 to P10_7</td>
</tr>
</tbody>
</table>

Note:
1. The average output current is the mean value within 100 ms.
Table 5.4 Recommended Operating Conditions (3/4)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Standard Unit</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>IOL(sum)</td>
<td>Low peak output current (100-pin package) (V_{CC1}, V_{CC2} \geq 2.7 \text{ V})</td>
<td>Sum of IOL(peak) at P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0 to P7_7, P8_0 to P8_7, P9_0 to P9_7, P10_0 to P10_7</td>
<td>80.0 mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IOL(sum)</td>
<td>Low peak output current (100-pin package) (V_{CC1}, V_{CC2} < 2.7 \text{ V})</td>
<td>Sum of IOL(peak) at P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0 to P7_7, P8_0 to P8_7</td>
<td>10.0 mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IOL(peak)</td>
<td>Low peak output current (80-pin package) (V_{CC1}, V_{CC2} \geq 2.7 \text{ V})</td>
<td>P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0 to P7_7, P8_0 to P8_7, P9_0 to P9_7, P10_0 to P10_7</td>
<td>10.0 mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IOL(peak)</td>
<td>Low peak output current (80-pin package) (V_{CC1}, V_{CC2} < 2.7 \text{ V})</td>
<td>P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0 to P7_7, P8_0 to P8_7, P9_0 to P9_7, P10_0 to P10_7</td>
<td>1.0 mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IOL(avg)</td>
<td>Low average output current (1) (V_{CC1}, V_{CC2} \geq 2.7 \text{ V})</td>
<td>P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0 to P7_7, P8_0 to P8_7, P9_0 to P9_7, P10_0 to P10_7</td>
<td>5.0 mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IOL(avg)</td>
<td>Low average output current (1) (V_{CC1}, V_{CC2} < 2.7 \text{ V})</td>
<td>P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0 to P7_7, P8_0 to P8_7, P9_0 to P9_7, P10_0 to P10_7</td>
<td>0.5 mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(f_{(XIN)})</td>
<td>Main clock input oscillation frequency</td>
<td>(2.7 \text{ V} \leq V_{CC1} \leq 5.5 \text{ V})</td>
<td>1 MHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(f_{(XIN)})</td>
<td>Main clock input oscillation frequency</td>
<td>(1.8 \text{ V} \leq V_{CC1} < 2.7 \text{ V})</td>
<td>10 MHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(f_{(XCIN)})</td>
<td>Sub clock oscillation frequency</td>
<td>(32.788 \text{ kHz})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(f_{(BCLK)})</td>
<td>CPU operation clock</td>
<td>(2.7 \text{ V} \leq V_{CC1} \leq 5.5 \text{ V}), (1 \text{ MHz} \leq f_{(XIN)} \leq 20 \text{ MHz})</td>
<td>20 MHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(f_{(BCLK)})</td>
<td>CPU operation clock</td>
<td>(2.1 \text{ V} \leq V_{CC1} < 2.7 \text{ V}), (1 \text{ MHz} \leq f_{(XIN)} \leq 10 \text{ MHz})</td>
<td>10 MHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(f_{(BCLK)})</td>
<td>CPU operation clock</td>
<td>(1.8 \text{ V} \leq V_{CC1} < 2.1 \text{ V}), (1 \text{ MHz} \leq f_{(XIN)} \leq 10 \text{ MHz})</td>
<td>(Note 2) MHz</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1. The average output current is the mean value within 100 ms.
2. Calculated by the following equation according to \(V_{CC1} \times 16.67 \times V_{CC1} - 25 \) [MHz]

See Figure 5.1 “Relation between \(f_{(BCLK)} \) and \(V_{CC1} \)"
5. Electrical Characteristics

Figure 5.1 Relation between f_{BCLK} and V_{CC1}

Table 5.5 Recommended Operating Conditions (4/4)(1)

$V_{\text{CC1}} = 1.8$ to 5.5 V, $V_{\text{SS}} = 0$ V, and $T_{\text{opr}} = -20^\circ$C to 85°C with -40°C to 85°C unless otherwise specified.

The ripple voltage must not exceed $V_{r(VCC1)}$ and/or $dV_{r(VCC1)}/dt$.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Standard</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V_{r(VCC1)}$</td>
<td>Allowable ripple voltage</td>
<td>$V_{\text{CC1}} = 5.0$ V</td>
<td>0.5 Vp-p</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{\text{CC1}} = 3.0$ V</td>
<td>0.3 Vp-p</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{\text{CC1}} = 2.0$ V</td>
<td>0.2 Vp-p</td>
</tr>
<tr>
<td>$dV_{r(VCC1)}/dt$</td>
<td>Ripple voltage falling gradient</td>
<td>$V_{\text{CC1}} = 5.0$ V</td>
<td>0.3 V/ms</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{\text{CC1}} = 3.0$ V</td>
<td>0.3 V/ms</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{\text{CC1}} = 2.0$ V</td>
<td>0.3 V/ms</td>
</tr>
</tbody>
</table>

Note:
1. The device is operationally guaranteed under these operating conditions.

Figure 5.2 Ripple Waveform
5.1.3 A/D Conversion Characteristics

Table 5.6 A/D Conversion Characteristics (1/2) (1)

$\text{AV}_{\text{CC}} = \text{V}_{\text{CC1}} = \text{V}_{\text{CC2}} = \text{V}_{\text{REF}} = 1.8 \text{ to } 5.5 \text{ V}, \text{V}_{\text{SS}} = \text{AV}_{\text{SS}} = 0 \text{ V}\) at $T_{\text{opr}} = -20^\circ\text{C}$ to 85°C unless otherwise specified.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Measuring Condition</th>
<th>Standard Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Resolution</td>
<td>$\text{AV}{\text{CC}} = \text{V}{\text{CC1}} = \text{V}{\text{CC2}} = \text{V}{\text{REF}}$</td>
<td>10</td>
<td>Bits</td>
<td></td>
<td></td>
</tr>
<tr>
<td>INL</td>
<td>Integral non-linearity error</td>
<td>10 bits</td>
<td>$\text{V}_{\text{CC1}} = 5.0 \text{ V}$</td>
<td>AN0 to AN7 input, AN0_0 to AN0_7 input, AN2_0 to AN2_7 input, ANEX0, ANEX1 input (Note 2)</td>
<td>±3</td>
<td>LSB</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\text{V}_{\text{CC1}} = 3.3 \text{ V}$</td>
<td>AN0 to AN7 input, AN0_0 to AN0_7 input, AN2_0 to AN2_7 input, ANEX0, ANEX1 input (Note 2)</td>
<td>±3</td>
<td>LSB</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\text{V}_{\text{CC1}} = 3.0 \text{ V}$</td>
<td>AN0 to AN7 input, AN0_0 to AN0_7 input, AN2_0 to AN2_7 input, ANEX0, ANEX1 input (Note 2)</td>
<td>±3</td>
<td>LSB</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\text{V}_{\text{CC1}} = 2.2 \text{ V}$ (3)</td>
<td>AN0 to AN7 input, AN0_0 to AN0_7 input, AN2_0 to AN2_7 input (Note 2)</td>
<td>±6</td>
<td>LSB</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\text{V}_{\text{CC1}} = 1.8 \text{ V}$ (3)</td>
<td>AN0 to AN7 input, AN0_0 to AN0_7 input, AN2_0 to AN2_7 input (Note 2)</td>
<td>±6</td>
<td>LSB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Absolute accuracy</td>
<td>10 bits</td>
<td>$\text{V}_{\text{CC1}} = 5.0 \text{ V}$</td>
<td>AN0 to AN7 input, AN0_0 to AN0_7 input, AN2_0 to AN2_7 input, ANEX0, ANEX1 input (Note 2)</td>
<td>±3</td>
<td>LSB</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\text{V}_{\text{CC1}} = 3.3 \text{ V}$</td>
<td>AN0 to AN7 input, AN0_0 to AN0_7 input, AN2_0 to AN2_7 input, ANEX0, ANEX1 input (Note 2)</td>
<td>±3</td>
<td>LSB</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\text{V}_{\text{CC1}} = 3.0 \text{ V}$</td>
<td>AN0 to AN7 input, AN0_0 to AN0_7 input, AN2_0 to AN2_7 input, ANEX0, ANEX1 input (Note 2)</td>
<td>±3</td>
<td>LSB</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\text{V}_{\text{CC1}} = 2.2 \text{ V}$ (3)</td>
<td>AN0 to AN7 input, AN0_0 to AN0_7 input, AN2_0 to AN2_7 input (Note 2)</td>
<td>±6</td>
<td>LSB</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\text{V}_{\text{CC1}} = 1.8 \text{ V}$ (3)</td>
<td>AN0 to AN7 input, AN0_0 to AN0_7 input, AN2_0 to AN2_7 input (Note 2)</td>
<td>±6</td>
<td>LSB</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1. Use when $\text{AV}_{\text{CC}} = \text{V}_{\text{CC1}} = \text{V}_{\text{CC2}}$.
2. Flash memory rewrite disabled. Except for the analog input pin, set the pins to be measured as input ports and connect them to V_{SS}. See Figure 5.3 “A/D Accuracy Measure Circuit”.
3. PUMPON bit in the ADCON1 register is 1 (Voltage multiplier ON)
5. Electrical Characteristics

Figure 5.3 A/D Accuracy Measure Circuit

![A/D Accuracy Measure Circuit Diagram](image)

Notes:
1. Use when AVCC = VCC1 = VCC2.
2. Do not use A/D converter when VCC1 > VCC2.
3. When analog input voltage is over reference voltage, the result of A/D conversion is 3FFh.
4. Flash memory rewrite disabled. Except for the analog input pin, set the pins to be measured as input ports and connect them to VSS. See Figure 5.3 "A/D Accuracy Measure Circuit".

5.1.4 D/A Conversion Characteristics

Table 5.7 A/D Conversion Characteristics (2/2) (1)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Measuring Condition</th>
<th>Standard (Min, Typ, Max)</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>φAD</td>
<td>A/D operating clock frequency</td>
<td>4.0 V ≤ VREF ≤ AVCC ≤ 5.5 V</td>
<td>2, 20 MHz</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.2 V ≤ VREF ≤ AVCC ≤ 5.5 V</td>
<td>2, 16 MHz</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.0 V ≤ VREF ≤ AVCC ≤ 5.5 V</td>
<td>2, 10 MHz</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.8 V ≤ VREF ≤ AVCC ≤ 5.5 V</td>
<td>2, 5 MHz</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tolerance level impedance</td>
<td></td>
<td>3</td>
<td>kΩ</td>
</tr>
<tr>
<td>DNL</td>
<td>Differential non-linearity error</td>
<td>(4)</td>
<td>±1</td>
<td>LSB</td>
</tr>
<tr>
<td>E</td>
<td>Offset error</td>
<td>(4)</td>
<td>±3</td>
<td>LSB</td>
</tr>
<tr>
<td>G</td>
<td>Gain error</td>
<td>(4)</td>
<td>±3</td>
<td>LSB</td>
</tr>
<tr>
<td>tCONV</td>
<td>10-bit conversion time</td>
<td>VCC1 = 5 V, φAD = 20 MHz</td>
<td>2.15</td>
<td>μs</td>
</tr>
<tr>
<td>tSAMP</td>
<td>Sampling time</td>
<td></td>
<td>0.75</td>
<td>μs</td>
</tr>
<tr>
<td>VREF</td>
<td>Reference voltage</td>
<td></td>
<td>1.8 VREF VREF V</td>
<td></td>
</tr>
<tr>
<td>VIA</td>
<td>Analog input voltage</td>
<td></td>
<td>0 VREF V</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1. Use when AVCC = VCC1 = VCC2.
2. Do not use A/D converter when VCC1 > VCC2.
3. When analog input voltage is over reference voltage, the result of A/D conversion is 3FFh.
4. Flash memory rewrite disabled. Except for the analog input pin, set the pins to be measured as input ports and connect them to VSS. See Figure 5.3 "A/D Accuracy Measure Circuit".

Table 5.8 D/A Conversion Characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Measuring Condition</th>
<th>Standard (Min, Typ, Max)</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Resolution</td>
<td></td>
<td>8</td>
<td>Bits</td>
</tr>
<tr>
<td></td>
<td>Absolute Accuracy</td>
<td></td>
<td>2.5</td>
<td>LSB</td>
</tr>
<tr>
<td></td>
<td>Setup Time</td>
<td></td>
<td>3</td>
<td>μs</td>
</tr>
<tr>
<td>ROUT</td>
<td>Output Resistance</td>
<td></td>
<td>5, 6, 8.2</td>
<td>kΩ</td>
</tr>
<tr>
<td>IVREF</td>
<td>Reference Power Supply Input Current</td>
<td>See Notes 1 and 2</td>
<td>1.5</td>
<td>mA</td>
</tr>
</tbody>
</table>

Notes:
1. This applies when using one D/A converter, with the D/A register for the unused D/A converter set to 00h.
2. The current consumption of the A/D converter is not included. Also, the IVREF of the D/A converter will flow even if the ADSTBY bit in the ADCON1 register is 0 (A/D operation stopped (standby)).
5.1.5 Flash Memory Electrical Characteristics

Table 5.9 CPU Clock When Operating Flash Memory (f_{BCLK})

\[V_{CC1} = 1.8 \text{ to } 5.5 \text{ V, } T_{opr} = -20^\circ \text{C to } 85^\circ \text{C unless otherwise specified.} \]

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Standard</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CPU rewrite mode</td>
<td></td>
<td>Min.</td>
<td>Typ.</td>
</tr>
<tr>
<td>f(SLOW_R)</td>
<td>Slow read mode</td>
<td></td>
<td>10 (1)</td>
<td>MHz</td>
</tr>
<tr>
<td></td>
<td>Low current consumption read mode</td>
<td>IC(32.768)</td>
<td>5 (3)</td>
<td>MHz</td>
</tr>
<tr>
<td></td>
<td>Data flash read</td>
<td>3.0 V ≤ V_{CC1} ≤ 5.5 V</td>
<td>35 kHz</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1. Set the PM17 bit in the PM1 register to 1 (one wait).
2. When the frequency is 1.8 \(\leq V_{CC1} \leq 3.0 \text{ V} \), set the FMR17 bit in the FMR1 register to 0 (one wait) or the PM17 bit in the PM1 register to 1 (one wait).
3. Set the PM17 bit in the PM1 register to 1 (one wait). When using 125 kHz on-chip oscillator clock or sub clock as the CPU clock source, a wait is not necessary.

Table 5.10 Flash Memory (Program ROM 1, 2) Electrical Characteristics

\[V_{CC1} = 2.7 \text{ to } 5.5 \text{ V at } T_{opr} = 0^\circ \text{C to } 60^\circ \text{C (option: -40^\circ \text{C to } 85^\circ \text{C), unless otherwise specified.} \]

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Standard</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Program and erase cycles (1), (3), (4)</td>
<td>(V_{CC1} = 3.3 \text{ V, } T_{opr} = 25^\circ \text{C})</td>
<td>1,000 (2) times</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 word program time</td>
<td>(V_{CC1} = 3.3 \text{ V, } T_{opr} = 25^\circ \text{C})</td>
<td>150 4000 µs</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lock bit program time</td>
<td>(V_{CC1} = 3.3 \text{ V, } T_{opr} = 25^\circ \text{C})</td>
<td>70 3000 µs</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Block erase time</td>
<td>(V_{CC1} = 3.3 \text{ V, } T_{opr} = 25^\circ \text{C})</td>
<td>0.2 3.0 s</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[t_{(SR-SUS)}] Time delay from suspend request until suspend</td>
<td>(5 + \frac{3}{f_{BCLK}}) ms</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Interval from erase start/restart until following suspend request</td>
<td>0 µs</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Suspend interval necessary for auto-erasure to complete (7)</td>
<td>20 ms</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Time from suspend until erase restart</td>
<td>(30 + \frac{1}{f_{BCLK}}) µs</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Program, erase voltage</td>
<td>2.7 5.5 V</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Read voltage</td>
<td>(T_{opr} = -20^\circ \text{C to } 85^\circ \text{C/-40^\circ \text{C to } 85^\circ \text{C})</td>
<td>2.7 5.5 V</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Program, erase temperature</td>
<td>0 60 °C</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[t_{PS}] Flash memory circuit stabilization wait time</td>
<td>50 µs</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Data hold time (6)</td>
<td>Ambient temperature = 55 °C</td>
<td>20 year</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1. Definition of program and erase cycles:
The program and erase cycles refer to the number of per-block erasures. If the program and erase cycles are \(n \) (\(n = 1,000 \)), each block can be erased \(n \) times. For example, if a block is erased after writing 2 word data 16,384 times, each to a different address, this counts as one program and erase cycles. Data cannot be written to the same address more than once without erasing the block (rewrite prohibited).
2. Cycles to guarantee all electrical characteristics after program and erase. (1 to Min. value can be guaranteed).
3. In a system that executes multiple programming operations, the actual erase count can be reduced by writing to sequential addresses in turn so that as much of the block as possible is used up before performing an erase operation. It is advisable to retain data on the erase cycles of each block and limit the number of erase operations to a certain number.
4. If an error occurs during block erase, attempt to execute the clear status register command, then execute the block erase command at least three times until the erase error does not occur.
5. Customers desiring program/erase failure rate information should contact a Renesas Electronics sales office.
6. The data hold time includes time that the power supply is off or the clock is not supplied.
7. After an erase start or erase restart, if an interval of at least 20 ms is not set before the next suspend request, the erase sequence cannot be completed.
Table 5.11Flash Memory (Data Flash) Electrical Characteristics

\(V_{CC1} = 2.7 \) to \(5.5 \) V at \(T_{opr} = -20 \) to \(85^\circ C/-40 \) to \(85^\circ C \), unless otherwise specified.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Program and erase cycles ((1), (3), (4)\</td>
<td>(V_{CC1} = 3.3) V, (T_{opr} = 25^\circ C)</td>
<td></td>
<td>10,000 ((2)) times</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 word program time</td>
<td>(V_{CC1} = 3.3) V, (T_{opr} = 25^\circ C)</td>
<td></td>
<td>300</td>
<td>4000</td>
<td>(\mu s)</td>
</tr>
<tr>
<td></td>
<td>Lock bit program time</td>
<td>(V_{CC1} = 3.3) V, (T_{opr} = 25^\circ C)</td>
<td></td>
<td>140</td>
<td>3000</td>
<td>(\mu s)</td>
</tr>
<tr>
<td></td>
<td>Block erase time</td>
<td>(V_{CC1} = 3.3) V, (T_{opr} = 25^\circ C)</td>
<td></td>
<td>0.2</td>
<td>3.0</td>
<td>s</td>
</tr>
</tbody>
</table>

\(t_{SR-SUS} \) Time delay from suspend request until suspend

- Interval from erase start/restart until following suspend request
 - Suspended interval necessary for auto-erasure to complete \((7)\)
 - Time from suspend until erase restart

Program, erase voltage	2.7	5.5	V
Read voltage	2.7	5.5	V
Program, erase temperature	\(-20/-40\)	85	\(^\circ C \)

\(t_{PS} \) Flash memory circuit stabilization wait time

- Data hold time \((6)\)
 - Ambient temperature = \(55^\circ C \)

Notes:

1. Definition of program and erase cycles
 The program and erase cycles refer to the number of per-block erasures.
 If the program and erase cycles are \(n \) (\(n = 10,000 \)), each block can be erased \(n \) times.
 For example, if a 4 KB block is erased after writing 2 word data 1,024 times, each to a different address, this counts as one program and erase cycles. Data cannot be written to the same address more than once without erasing the block (rewrite prohibited).

2. Cycles to guarantee all electrical characteristics after program and erase. (1 to Min. value can be guaranteed).

3. In a system that executes multiple programming operations, the actual erase count can be reduced by writing to sequential addresses in turn so that as much of the block as possible is used up before performing an erase operation. For example, when programming groups of 16 bytes, the effective number of rewrites can be minimized by programming up to 256 groups before erasing them all in one operation. In addition, averaging the erasure cycles between blocks A and B can further reduce the actual erasure cycles. It is also advisable to retain data on the erasure cycles of each block and limit the number of erase operations to a certain number.

4. If an error occurs during block erase, attempt to execute the clear status register command, then execute the block erase command at least three times until the erase error does not occur.

5. Customers desiring program/erase failure rate information should contact a Renesas Electronics sales office.

6. The data hold time includes time that the power supply is off or the clock is not supplied.

7. After an erase start or erase restart, if an interval of at least 20 ms is not set before the next suspend request, the erase sequence cannot be completed.
5.1.6 Voltage Detector and Power Supply Circuit Electrical Characteristics

Table 5.12 Voltage Detector 0 Electrical Characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Condition</th>
<th>Standard</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vdet0</td>
<td>Voltage detection level Vdet0_0 (1)</td>
<td>When VCC1 is falling.</td>
<td>1.80</td>
<td>1.90</td>
</tr>
<tr>
<td></td>
<td>Voltage detection level Vdet0_2 (1)</td>
<td>When VCC1 is falling.</td>
<td>2.70</td>
<td>2.85</td>
</tr>
<tr>
<td></td>
<td>Voltage detector 0 response time (3)</td>
<td>When VCC1 falls from 5 V to (Vdet0_0 - 0.1) V</td>
<td>200</td>
<td>μs</td>
</tr>
<tr>
<td></td>
<td>Voltage detector self power consumption</td>
<td>VC25 = 1, VCC1 = 5.0 V</td>
<td>1.5</td>
<td>μA</td>
</tr>
<tr>
<td>tE-A</td>
<td>Waiting time until voltage detector operation starts (2)</td>
<td></td>
<td>100</td>
<td>μs</td>
</tr>
</tbody>
</table>

Notes:
1. Select the voltage detection level with the VDSEL1 bit in the OFS1 address.
2. Necessary time until the voltage detector operates when setting to 1 again after setting the VC25 bit in the VCR2 register to 0.
3. Time from when passing the Vdet0 until when a voltage monitor 0 reset is generated.

Table 5.13 Voltage Detector 1 Electrical Characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Condition</th>
<th>Standard</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vdet1</td>
<td>Voltage detection level Vdet1_0 (1)</td>
<td>When VCC1 is falling.</td>
<td>1.90</td>
<td>2.20</td>
</tr>
<tr>
<td></td>
<td>Voltage detection level Vdet1_6 (1)</td>
<td>When VCC1 is falling.</td>
<td>2.80</td>
<td>3.10</td>
</tr>
<tr>
<td></td>
<td>Voltage detection level Vdet1_B (1)</td>
<td>When VCC1 is falling.</td>
<td>3.55</td>
<td>3.85</td>
</tr>
<tr>
<td></td>
<td>Voltage detection level Vdet1_F (1)</td>
<td>When VCC1 is falling.</td>
<td>4.15</td>
<td>4.45</td>
</tr>
<tr>
<td></td>
<td>Hysteresis width at the rising of VCC1 in voltage detector 1</td>
<td>When selecting Vdet1_0</td>
<td>0.10</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>When selecting Vdet1_6 to Vdet1_F</td>
<td>0.15</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>Voltage detector 1 response time (3)</td>
<td>When VCC1 falls from 5 V to (Vdet1_0 - 0.1) V</td>
<td>200</td>
<td>μs</td>
</tr>
<tr>
<td></td>
<td>Voltage detector self power consumption</td>
<td>VC26 = 1, VCC1 = 5.0 V</td>
<td>1.7</td>
<td>μA</td>
</tr>
<tr>
<td>tE-A</td>
<td>Waiting time until voltage detector operation starts (2)</td>
<td></td>
<td>100</td>
<td>μs</td>
</tr>
</tbody>
</table>

Notes:
1. Select the voltage detection level with bits VD1S0 to VD1S3 in the VD1LS register.
2. Necessary time until the voltage detector operates when setting to 1 again after setting the VC26 bit in the VCR2 register to 0.
3. Time from when passing the Vdet1 until when a voltage monitor 1 reset is generated.
Table 5.14 Voltage Detector 2 Electrical Characteristics

The measurement condition is $V_{CC1} = 1.8$ to 5.5 V, $T_{opr} = -20^\circ$C to 85°C/-40°C to 85°C, unless otherwise specified.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Condition</th>
<th>Standard</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{det2}</td>
<td>Voltage detection level V_{det2_0}</td>
<td>When V_{CC1} is falling</td>
<td>Min. 3.70 Typ. 4.00 Max. 4.30</td>
<td>V</td>
</tr>
<tr>
<td>-</td>
<td>Hysteresis width at the rising of V_{CC1} in voltage detector 2</td>
<td></td>
<td>0.15</td>
<td>V</td>
</tr>
<tr>
<td>-</td>
<td>Voltage detector 2 response time (2)</td>
<td>When V_{CC1} falls from 5 V to $(V_{det2_0} - 0.1)$ V</td>
<td>200</td>
<td>μs</td>
</tr>
<tr>
<td>-</td>
<td>Voltage detector self power consumption</td>
<td>$VC27 = 1$, $V_{CC1} = 5.0$ V</td>
<td>1.7</td>
<td>μA</td>
</tr>
<tr>
<td>$t_{d(E-A)}$</td>
<td>Waiting time until voltage detector operation starts (1)</td>
<td></td>
<td>100</td>
<td>μs</td>
</tr>
</tbody>
</table>

Notes:
1. Necessary time until the voltage detector operates after setting to 1 again after setting the VC27 bit in the VCR2 register to 0.
2. Time from when passing the V_{det2} until when a voltage monitor 2 reset is generated.

Table 5.15 Power-On Reset Circuit

The measurement condition is $V_{CC1} = 2.0$ to 5.5 V, $T_{opr} = -20^\circ$C to 85°C/-40°C to 85°C, unless otherwise specified.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Condition</th>
<th>Standard</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{por1}</td>
<td>Voltage at which power-on reset enabled (1)</td>
<td></td>
<td>0.5</td>
<td>V</td>
</tr>
<tr>
<td>t_{th}</td>
<td>External power V_{CC1} rise gradient</td>
<td></td>
<td>2.0</td>
<td>50000 mV/ms</td>
</tr>
<tr>
<td>$t_{w(por)}$</td>
<td>Time necessary to enable power-on reset</td>
<td></td>
<td>300</td>
<td>ms</td>
</tr>
</tbody>
</table>

Note:
1. To use the power-on reset function, enable voltage monitor 0 reset by setting the LVDAS bit in the OFS1 address to 0. Also, set the VDSEL1 bit to 0 (V_{det0_2}).

Note:
1. V_{det0} indicates the voltage detection level of the voltage detection 0 circuit.

Figure 5.4 Power-On Reset Circuit Electrical Characteristics
Table 5.16 Power Supply Circuit Timing Characteristics

The measurement condition is $V_{CC1} = 1.8$ to 5.5 V and $T_{opr} = 25^\circ$C, unless otherwise specified.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Condition</th>
<th>Standard</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>$t_{d(P-R)}$</td>
<td>Internal power supply stability time when power is on (1)</td>
<td></td>
<td>5</td>
<td>ms</td>
</tr>
<tr>
<td>$t_{d(R-S)}$</td>
<td>STOP release time</td>
<td></td>
<td>150</td>
<td>μs</td>
</tr>
<tr>
<td>$t_{d(W-S)}$</td>
<td>Low power mode wait mode release time</td>
<td></td>
<td>150</td>
<td>μs</td>
</tr>
</tbody>
</table>

Note:
1. Waiting time until the internal power supply generator stabilizes when power is on.

Figure 5.5 Power Supply Circuit Timing Diagram
5.1.7 Oscillator Electrical Characteristics

Table 5.17 40 MHz On-Chip Oscillator Electrical Characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Condition</th>
<th>Standard</th>
<th>Unit</th>
</tr>
</thead>
</table>
| \(f_{OCO40M} \) | 40 MHz on-chip oscillator frequency | Average frequency in a 10 ms period
\[2.7 \, \text{V} \leq V_{CC1} < 5.5 \, \text{V} \] | 36 | 40 | 44 | MHz |
| | | Average frequency in a 10 ms period
\[1.8 \, \text{V} \leq V_{CC1} < 2.7 \, \text{V} \] | 30 | 40 | 50 | MHz |
| \(t_{su}(f_{OCO40M}) \) | Wait time until 40 MHz on-chip oscillator stabilizes | | 2 | ms |

Table 5.18 125 kHz On-Chip Oscillator Electrical Characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Condition</th>
<th>Standard</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f_{OCO-S})</td>
<td>125 kHz on-chip oscillator frequency</td>
<td>Average frequency in a 10 ms period</td>
<td>100</td>
<td>125</td>
</tr>
<tr>
<td>(t_{su}(f_{OCO-S}))</td>
<td>Wait time until 125 kHz on-chip oscillator stabilizes</td>
<td></td>
<td></td>
<td>20</td>
</tr>
</tbody>
</table>
5.2 Electrical Characteristics (V_{CC1} = V_{CC2} = 5 V)

5.2.1 Electrical Characteristics

\[V_{CC1} = V_{CC2} = 5 \text{ V} \]

Table 5.19 Electrical Characteristics (1) \(^{(1)}\)

\(V_{CC1} = V_{CC2} = 4.2 \text{ to } 5.5 \text{ V}, V_{SS} = 0 \text{ V} \) at \(T_{opp} = -20^\circ \text{C} \text{ to } 85^\circ \text{C}, f_{(\text{BCLK})} = 20 \text{ MHz} \) unless otherwise specified.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Measuring Condition</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{OH})</td>
<td>High output voltage P6_0 to P6_7, P7_2 to P7_7, P8_0 to P8_4, P8_6, P8_7, P9_0 to P9_7, P10_0 to P10_7</td>
<td>(I_{OH} = -5 \text{ mA})</td>
<td>(V_{CC1} = 2.0)</td>
<td>(V_{CC1})</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>(V_{OH})</td>
<td>High output voltage P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7</td>
<td>(I_{OH} = -200 \mu \text{A})</td>
<td>(V_{CC1} = 0.3)</td>
<td>(V_{CC1})</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>(V_{OH})</td>
<td>High output voltage XOUT HIGHPOWER</td>
<td>(I_{OH} = -1 \text{ mA})</td>
<td>(V_{CC1} = 2.0)</td>
<td>(V_{CC1})</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>(V_{OH})</td>
<td>High output voltage XOUT LOWPOWER</td>
<td>(I_{OH} = -0.5 \text{ mA})</td>
<td>(V_{CC1} = 2.0)</td>
<td>(V_{CC1})</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>(V_{OL})</td>
<td>Low output voltage P6_0 to P6_7, P7_0 to P7_7, P8_0 to P8_4, P8_6, P8_7, P9_0 to P9_7, P10_0 to P10_7</td>
<td>(I_{OL} = 5 \text{ mA})</td>
<td>2.0</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(V_{OL})</td>
<td>Low output voltage P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7</td>
<td>(I_{OL} = 5 \text{ mA})</td>
<td>2.0</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(V_{OL})</td>
<td>Low output voltage P6_0 to P6_7, P7_0 to P7_7, P8_0 to P8_4, P9_0 to P9_7, P10_0 to P10_7</td>
<td>(I_{OL} = 200 \mu \text{A})</td>
<td>0.45</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(V_{OL})</td>
<td>Low output voltage P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7</td>
<td>(I_{OL} = 200 \mu \text{A})</td>
<td>0.45</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(V_{OL})</td>
<td>Low output voltage XOUT HIGHPOWER</td>
<td>(I_{OL} = 1 \text{ mA})</td>
<td>2.0</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(V_{OL})</td>
<td>Low output voltage XOUT LOWPOWER</td>
<td>(I_{OL} = 0.5 \text{ mA})</td>
<td>2.0</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(V_{OL})</td>
<td>Low output voltage With no load applied</td>
<td>0</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note:
1. When \(V_{CC1} \neq V_{CC2} \), refer to 5 V, 3 V, or 1.8 V standard depending on the voltage.
Table 5.20 Electrical Characteristics (2) (1)

- **$V_{CC1} = V_{CC2} = 5 \text{ V}$**

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Measuring Condition</th>
<th>Standard Unit</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V_{T+} - V_{T-}$ Hysteresis</td>
<td>HOLD, RDY, TA0IN to TA4IN, TB0IN to TB5IN, INT0 to INT7, NMI, ADTRG, CTS0 to CTS2, CTS5 to CTS7, SCL0 to SCL2, SCL5 to SCL7, SDA0 to SDA2, SDA5 to SDA7, CLK0 to CLK7, TA0OUT to TA4OUT, KI0 to KI7, RXD0 to RXD2, RXD5 to RXD7, SIN3, SIN4, SD, PMC0, PMC1, SCLMM, SDAMM, CEC, ZP, IDU, IDV, IDW</td>
<td>0.5</td>
<td>2.0 V</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$V_{T+} - V_{T-}$ Hysteresis</td>
<td>RESET</td>
<td>0.5</td>
<td>2.5 V</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{IH} High input current</td>
<td>P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0 to P7_7, P8_0 to P8_7, P9_0 to P9_7, P10_0 to P10_7, XIN, RESET, CNVSS, BYTE</td>
<td>$V_{i} = 5 \text{ V}$</td>
<td>5.0 μA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{IL} Low input current</td>
<td>P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0 to P7_7, P8_0 to P8_7, P9_0 to P9_7, P10_0 to P10_7, XIN, RESET, CNVSS, BYTE</td>
<td>$V_{i} = 0 \text{ V}$</td>
<td>−5.0 μA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R_{PULLUP} Pull-up resistance</td>
<td>P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0 to P7_7, P8_0 to P8_7, P9_0 to P9_7, P10_0 to P10_7, XIN, RESET, CNVSS, BYTE</td>
<td>$V_{i} = 0 \text{ V}$</td>
<td>30</td>
<td>50</td>
<td>170</td>
<td>kΩ</td>
<td></td>
</tr>
<tr>
<td>R_{XXIN} Feedback resistance</td>
<td>XIN</td>
<td>0.8</td>
<td>MΩ</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R_{XXCIN} Feedback resistance</td>
<td>XCIN</td>
<td>8</td>
<td>MΩ</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{RAM} RAM retention voltage</td>
<td>In stop mode</td>
<td>1.8</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note:

1. When $V_{CC1} \neq V_{CC2}$, refer to 5 V, 3 V, or 1.8 V standard depending on the voltage.
Table 5.21 Electrical Characteristics (3)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Measuring Condition</th>
<th>Standard Unit</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICC</td>
<td>Power supply current</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>In single-chip, mode, the output pin are open and other pins are VSS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>High-speed mode</td>
<td>f(_B)CLK = 20 MHz (no division) XIN = 20 MHz (square wave) 125 kHz on-chip oscillator stopped CM15 = 1 (drive capacity High) A/D converter stopped</td>
<td></td>
<td></td>
<td>10.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>f(_B)CLK = 20 MHz (no division) XIN = 20 MHz (square wave) 125 kHz on-chip oscillator stopped CM15 = 1 (drive capacity High) A/D converter operating</td>
<td></td>
<td></td>
<td>11.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>f(_B)CLK = 20 MHz XIN = 20 MHz (square wave) 125 kHz on-chip oscillator stopped CM15 = 0 (drive capacity Low) A/D converter stopped</td>
<td></td>
<td></td>
<td>10.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>f(_B)CLK = 20 MHz (no division) XIN = 20 MHz (square wave) 125 kHz on-chip oscillator stopped CM15 = 1 (drive capacity High) PCLKSTP1 = FF (peripheral clock stop)</td>
<td></td>
<td></td>
<td>9.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>f(_B)CLK = 20 MHz XIN = 20 MHz (square wave) 125 kHz on-chip oscillator stopped CM15 = 0 (drive capacity Low) PCLKSTP1 = FF (peripheral clock stop)</td>
<td></td>
<td></td>
<td>8.5</td>
<td></td>
</tr>
<tr>
<td>ICC</td>
<td>40 MHz on-chip oscillator mode</td>
<td>Main clock stopped 40 MHz on-chip oscillator on, divide-by-2 (f(_B)CLK = 20 MHz) 125 kHz on-chip oscillator stopped</td>
<td></td>
<td></td>
<td>9.0</td>
<td></td>
</tr>
<tr>
<td>ICC</td>
<td>125 kHz on-chip oscillator mode</td>
<td>Main clock stopped 40 MHz on-chip oscillator stopped, 125 kHz on-chip oscillator on, no division FMR22 = 1 (slow read mode)</td>
<td></td>
<td></td>
<td>450.0</td>
<td>µA</td>
</tr>
<tr>
<td>ICC</td>
<td>Low-power mode</td>
<td>f(_B)CLK = 32 kHz FMR22 = FMR23 = 1 (in low current consumption read mode) On flash memory (1)</td>
<td></td>
<td></td>
<td>80.0</td>
<td>µA</td>
</tr>
<tr>
<td>ICC</td>
<td>Wait mode</td>
<td>f(_B)CLK = 32 kHz Main clock stopped 40 MHz on-chip oscillator stopped 125 kHz on-chip oscillator on PM25 = 1 (peripheral function clock fC operating) T(_opr) = 25°C Real-time clock operating</td>
<td></td>
<td></td>
<td>5.6</td>
<td></td>
</tr>
<tr>
<td>ICC</td>
<td></td>
<td>f(_B)CLK = 32 kHz Main clock stopped 40 MHz on-chip oscillator stopped 125 kHz on-chip oscillator stopped PM25 = 0 (peripheral function clock fC stopped) T(_opr) = 25°C</td>
<td></td>
<td></td>
<td>5.3</td>
<td></td>
</tr>
<tr>
<td>ICC</td>
<td>Stop mode</td>
<td>T(_opr) = 25°C</td>
<td></td>
<td></td>
<td>2.4</td>
<td></td>
</tr>
<tr>
<td>ICC</td>
<td>During flash memory program</td>
<td>f(_B)CLK = 10 MHz, PM17 = 1 (one wait) VCC1 = 5.0 V</td>
<td></td>
<td></td>
<td>20.0</td>
<td></td>
</tr>
<tr>
<td>ICC</td>
<td>During flash memory erase</td>
<td>f(_B)CLK = 10 MHz, PM17 = 1 (one wait) VCC1 = 5.0 V</td>
<td></td>
<td></td>
<td>30.0</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1. This indicates the memory in which the program to be executed exists.
2. A/D conversion is executed in repeat mode.
5.2.2 Timing Requirements (Peripheral Functions and Others)

\(V_{CC1} = V_{CC2} = 5 \text{ V} \), \(V_{SS} = 0 \text{ V} \), at \(T_{opr} = -20^\circ \text{C} \) to \(85^\circ \text{C} \) unless otherwise specified)

5.2.2.1 Reset Input (RESET Input)

Table 5.22 Reset Input (RESET Input)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Standard</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_{w(RSTL)})</td>
<td>RESET input low pulse width</td>
<td></td>
<td>(\mu \text{s})</td>
</tr>
</tbody>
</table>

![Figure 5.6 Reset Input (RESET Input)](image)

5.2.2.2 External Clock Input

Table 5.23 External Clock Input (XIN Input) (1)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Standard</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_c)</td>
<td>External clock input cycle time</td>
<td>50</td>
<td>ns</td>
</tr>
<tr>
<td>(t_{w(H)})</td>
<td>External clock input high pulse width</td>
<td>20</td>
<td>ns</td>
</tr>
<tr>
<td>(t_{w(L)})</td>
<td>External clock input low pulse width</td>
<td>20</td>
<td>ns</td>
</tr>
<tr>
<td>(t_r)</td>
<td>External clock rise time</td>
<td>9</td>
<td>ns</td>
</tr>
<tr>
<td>(t_f)</td>
<td>External clock fall time</td>
<td>9</td>
<td>ns</td>
</tr>
</tbody>
</table>

Note:

1. The condition is \(V_{CC1} = V_{CC2} = 3.0 \) to 5.0 V.

![Figure 5.7 External Clock Input (XIN Input)](image)
Timing Requirements
($V_{CC1} = V_{CC2} = 5\, V$, $V_{SS} = 0\, V$, at $T_{opr} = -20^\circ\, C$ to $85^\circ\, C$ to $85^\circ\, C$ unless otherwise specified)

5.2.2.3 Timer A Input

Table 5.24 Timer A Input (Counter Input in Event Counter Mode)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Standard</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>$t_c(TA)$</td>
<td>TAiIN input cycle time</td>
<td>Min. 100</td>
<td>Max. ns</td>
</tr>
<tr>
<td>$t_w(TAH)$</td>
<td>TAiIN input high pulse width</td>
<td>Min. 40</td>
<td>Max. ns</td>
</tr>
<tr>
<td>$t_w(TAL)$</td>
<td>TAiIN input low pulse width</td>
<td>Min. 40</td>
<td>Max. ns</td>
</tr>
</tbody>
</table>

Table 5.25 Timer A Input (Gating Input in Timer Mode)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Standard</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>$t_c(TA)$</td>
<td>TAiIN input cycle time</td>
<td>Min. 400</td>
<td>Max. ns</td>
</tr>
<tr>
<td>$t_w(TAH)$</td>
<td>TAiIN input high pulse width</td>
<td>Min. 200</td>
<td>Max. ns</td>
</tr>
<tr>
<td>$t_w(TAL)$</td>
<td>TAiIN input low pulse width</td>
<td>Min. 200</td>
<td>Max. ns</td>
</tr>
</tbody>
</table>

Table 5.26 Timer A Input (External Trigger Input in One-Shot Timer Mode)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Standard</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>$t_c(TA)$</td>
<td>TAiIN input cycle time</td>
<td>Min. 200</td>
<td>Max. ns</td>
</tr>
<tr>
<td>$t_w(TAH)$</td>
<td>TAiIN input high pulse width</td>
<td>Min. 100</td>
<td>Max. ns</td>
</tr>
<tr>
<td>$t_w(TAL)$</td>
<td>TAiIN input low pulse width</td>
<td>Min. 100</td>
<td>Max. ns</td>
</tr>
</tbody>
</table>

Table 5.27 Timer A Input (External Trigger Input in Pulse Width Modulation Mode and Programmable Output Mode)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Standard</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>$t_w(TAH)$</td>
<td>TAiIN input high pulse width</td>
<td>Min. 100</td>
<td>Max. ns</td>
</tr>
<tr>
<td>$t_w(TAL)$</td>
<td>TAiIN input low pulse width</td>
<td>Min. 100</td>
<td>Max. ns</td>
</tr>
</tbody>
</table>

Figure 5.8 Timer A Input

$V_{CC1} = V_{CC2} = 5\, V$
Timing Requirements

(V\textsubscript{CC1} = V\textsubscript{CC2} = 5 V, \(V_{SS} = 0\) V, at \(T_{opr} = -20^\circ\text{C} \text{ to } 85^\circ\text{C}\) \text{/} -40^\circ\text{C} \text{ to } 85^\circ\text{C}\) unless otherwise specified)

Table 5.28 Timer A Input (Two-Phase Pulse Input in Event Counter Mode)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter Description</th>
<th>Standard</th>
<th>Min.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_c(TA))</td>
<td>TA\text{IN} input cycle time</td>
<td></td>
<td>800</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>(t_{su}(TA\text{IN}-TA\text{OUT}))</td>
<td>TA\text{OUT} input setup time</td>
<td></td>
<td>200</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>(t_{su}(TA\text{OUT}-TA\text{IN}))</td>
<td>TA\text{IN} input setup time</td>
<td></td>
<td>200</td>
<td></td>
<td>ns</td>
</tr>
</tbody>
</table>

Two-phase pulse input in event counter mode

Figure 5.9 Timer A Input (Two-Phase Pulse Input in Event Counter Mode)
V_{CC1} = V_{CC2} = 5 \, V

Timing Requirements
(V_{CC1} = V_{CC2} = 5 \, V, \, V_{SS} = 0 \, V, \, \text{at } T_{opr} = -20^\circ C \text{ to } 85^\circ C / -40^\circ C \text{ to } 85^\circ C \text{ unless otherwise specified})

5.2.2.4 Timer B Input

Table 5.29 Timer B Input (Counter Input in Event Counter Mode)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Standard</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_c(TB)</td>
<td>TBIIN input cycle time (counted on one edge)</td>
<td>100</td>
<td>ns</td>
</tr>
<tr>
<td>t_w(TBH)</td>
<td>TBIIN input high pulse width (counted on one edge)</td>
<td>40</td>
<td>ns</td>
</tr>
<tr>
<td>t_w(TBL)</td>
<td>TBIIN input low pulse width (counted on one edge)</td>
<td>40</td>
<td>ns</td>
</tr>
<tr>
<td>t_c(TB)</td>
<td>TBIIN input cycle time (counted on both edges)</td>
<td>200</td>
<td>ns</td>
</tr>
<tr>
<td>t_w(TBH)</td>
<td>TBIIN input high pulse width (counted on both edges)</td>
<td>80</td>
<td>ns</td>
</tr>
<tr>
<td>t_w(TBL)</td>
<td>TBIIN input low pulse width (counted on both edges)</td>
<td>80</td>
<td>ns</td>
</tr>
</tbody>
</table>

Table 5.30 Timer B Input (Pulse Period Measurement Mode)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Standard</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_c(TB)</td>
<td>TBIIN input cycle time</td>
<td>400</td>
<td>ns</td>
</tr>
<tr>
<td>t_w(TBH)</td>
<td>TBIIN input high pulse width</td>
<td>200</td>
<td>ns</td>
</tr>
<tr>
<td>t_w(TBL)</td>
<td>TBIIN input low pulse width</td>
<td>200</td>
<td>ns</td>
</tr>
</tbody>
</table>

Table 5.31 Timer B Input (Pulse Width Measurement Mode)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Standard</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_c(TB)</td>
<td>TBIIN input cycle time</td>
<td>400</td>
<td>ns</td>
</tr>
<tr>
<td>t_w(TBH)</td>
<td>TBIIN input high pulse width</td>
<td>200</td>
<td>ns</td>
</tr>
<tr>
<td>t_w(TBL)</td>
<td>TBIIN input low pulse width</td>
<td>200</td>
<td>ns</td>
</tr>
</tbody>
</table>

![Figure 5.10 Timer B Input](image-url)
Timing Requirements
(V\textsubscript{CC1} = V\textsubscript{CC2} = 5 V, V\textsubscript{SS} = 0 V, at T\textsubscript{opr} = -20°C to 85°C/ -40°C to 85°C unless otherwise specified)

5.2.2.5 Serial Interface

Table 5.32 Serial Interface

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Standard</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>t\textsubscript{c}(CK)</td>
<td>CLK\textsubscript{i} input cycle time</td>
<td>200</td>
<td>ns</td>
</tr>
<tr>
<td>t\textsubscript{w}(CKH)</td>
<td>CLK\textsubscript{i} input high pulse width</td>
<td>100</td>
<td>ns</td>
</tr>
<tr>
<td>t\textsubscript{w}(CKL)</td>
<td>CLK\textsubscript{i} input low pulse width</td>
<td>100</td>
<td>ns</td>
</tr>
<tr>
<td>t\textsubscript{d}(C-Q)</td>
<td>TXDi output delay time</td>
<td>80</td>
<td>ns</td>
</tr>
<tr>
<td>t\textsubscript{h}(C-Q)</td>
<td>TXDi hold time</td>
<td>0</td>
<td>ns</td>
</tr>
<tr>
<td>t\textsubscript{su}(D-C)</td>
<td>RXDi input setup time</td>
<td>70</td>
<td>ns</td>
</tr>
<tr>
<td>t\textsubscript{h}(C-D)</td>
<td>RXDi input hold time</td>
<td>90</td>
<td>ns</td>
</tr>
</tbody>
</table>

Figure 5.11 Serial Interface

5.2.2.6 External Interrupt INT\textsubscript{i} Input

Table 5.33 External Interrupt INT\textsubscript{i} Input

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Standard</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>t\textsubscript{w}(INH)</td>
<td>INT\textsubscript{i} input high pulse width</td>
<td>250</td>
<td>ns</td>
</tr>
<tr>
<td>t\textsubscript{w}(INL)</td>
<td>INT\textsubscript{i} input low pulse width</td>
<td>250</td>
<td>ns</td>
</tr>
</tbody>
</table>

Figure 5.12 External Interrupt INT\textsubscript{i} Input
Timing Requirements
(V_{CC1} = V_{CC2} = 5 V, V_{SS} = 0 V, at T_{opr} = -20°C to 85°C/-40°C to 85°C unless otherwise specified)

5.2.2.7 Multi-master I²C-bus

Table 5.34 Multi-master I²C-bus

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Standard Clock Mode</th>
<th>Fast-mode</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Min.</td>
<td>Max.</td>
</tr>
<tr>
<td>t_{BUF}</td>
<td>Bus free time</td>
<td>4.7</td>
<td>1.3</td>
</tr>
<tr>
<td>t_{HD;STA}</td>
<td>Hold time in start condition</td>
<td>4.0</td>
<td>0.6</td>
</tr>
<tr>
<td>t_{LOW}</td>
<td>Hold time in SCL clock 0 status</td>
<td>4.7</td>
<td>1.3</td>
</tr>
<tr>
<td>t_{R}</td>
<td>SCL, SDA signals' rising time</td>
<td></td>
<td>1000</td>
</tr>
<tr>
<td>t_{HD;DAT}</td>
<td>Data hold time</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>t_{HIGH}</td>
<td>Hold time in SCL clock 1 status</td>
<td>4.0</td>
<td>0.6</td>
</tr>
<tr>
<td>t_{F}</td>
<td>SCL, SDA signals' falling time</td>
<td></td>
<td>300</td>
</tr>
<tr>
<td>t_{su;DAT}</td>
<td>Data setup time</td>
<td>250</td>
<td>100</td>
</tr>
<tr>
<td>t_{su;STA}</td>
<td>Setup time in restart condition</td>
<td>4.7</td>
<td>0.6</td>
</tr>
<tr>
<td>t_{su;STO}</td>
<td>Stop condition setup time</td>
<td>4.0</td>
<td>0.6</td>
</tr>
</tbody>
</table>

Figure 5.13 Multi-master I²C-bus
5. Electrical Characteristics

\[V_{CC1} = V_{CC2} = 5 \, \text{V} \]

Timing Requirements

\(V_{CC1} = V_{CC2} = 5 \, \text{V}, \, V_{SS} = 0 \, \text{V}, \) at \(T_{opr} = -20^\circ \text{C} \) to \(85^\circ \text{C} / -40^\circ \text{C} \) to \(85^\circ \text{C} \) unless otherwise specified

5.2.3 Timing Requirements (Memory Expansion Mode and Microprocessor Mode)

Table 5.35 Memory Expansion Mode and Microprocessor Mode

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Standard</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_{ac1}(RD-DB))</td>
<td>Data input access time (for setting with no wait)</td>
<td>(Note 1)</td>
<td>ns</td>
</tr>
<tr>
<td>(t_{ac2}(RD-DB))</td>
<td>Data input access time (for setting with 1 to 3 waits)</td>
<td>(Note 2)</td>
<td>ns</td>
</tr>
<tr>
<td>(t_{ac3}(RD-DB))</td>
<td>Data input access time (when accessing multiplex bus area)</td>
<td>(Note 3)</td>
<td>ns</td>
</tr>
<tr>
<td>(t_{ac4}(RD-DB))</td>
<td>Data input access time (for setting with (2\phi + 3\phi) or more)</td>
<td>(Note 4)</td>
<td>ns</td>
</tr>
<tr>
<td>(t_{su}(DB-RD))</td>
<td>Data input setup time</td>
<td>40</td>
<td>ns</td>
</tr>
<tr>
<td>(t_{su}(RDY-BCLK))</td>
<td>RDY input setup time</td>
<td>80</td>
<td>ns</td>
</tr>
<tr>
<td>(t_{h}(RD-DB))</td>
<td>Data input hold time</td>
<td>0</td>
<td>ns</td>
</tr>
<tr>
<td>(t_{h}(BCLK-RDY))</td>
<td>RDY input hold time</td>
<td>0</td>
<td>ns</td>
</tr>
</tbody>
</table>

Notes:

1. Calculated according to the BCLK frequency as follows:

\[
\frac{0.5 \times 10^9}{f_{(BCLK)}} - 45 [\text{ns}]
\]

2. Calculated according to the BCLK frequency as follows:

\[
\frac{(n + 0.5) \times 10^9}{f_{(BCLK)}} - 45 [\text{ns}]
\]
\(n \) is 1 for 1 wait setting, 2 for 2 waits setting and 3 for 3 waits setting.

3. Calculated according to the BCLK frequency as follows:

\[
\frac{(n - 0.5) \times 10^9}{f_{(BCLK)}} - 45 [\text{ns}]
\]
\(n \) is 2 for 2 waits setting, and 3 for 3 waits setting.

4. Calculated according to the BCLK frequency as follows:

\[
\frac{n \times 10^9}{f_{(BCLK)}} - 45 [\text{ns}]
\]
\(n \) is 3 for \(2\phi + 3\phi \), 4 for \(2\phi + 4\phi \), 4 for \(3\phi + 4\phi \), and 5 for \(4\phi + 5\phi \).
Memory Expansion Mode and Microprocessor Mode

(Effective in wait state setting)

\[V_{CC1} = V_{CC2} = 5 \text{ V} \]

Figure 5.14 Timing Diagram

- BCLK
- RD (Separate bus)
- WR, WRL, WRH (Separate bus)
- RD (Multiplexed bus)
- WR, WRL, WRH (Multiplexed bus)
- RDY input

Measuring conditions
- \(V_{CC1} = V_{CC2} = 5 \text{ V} \)
- Input timing voltage: \(V_L = 1.0 \text{ V}, V_H = 4.0 \text{ V} \)
- Output timing voltage: \(V_L = 2.5 \text{ V}, V_H = 2.5 \text{ V} \)
V_{CC1} = V_{CC2} = 5 \, V

5.2.4 Switching Characteristics (Memory Expansion Mode and Microprocessor Mode)

(V_{CC1} = V_{CC2} = 5 \, V, \, V_{SS} = 0 \, V, \, \text{at } T_{op} = -20^\circ C \text{ to } 85^\circ C/-40^\circ C \text{ to } 85^\circ C \text{ unless otherwise specified})

5.2.4.1 In No Wait State Setting

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Measuring Condition</th>
<th>Standard</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_{d(BCLK-AD)}</td>
<td>Address output delay time</td>
<td></td>
<td>Min. 25</td>
<td>ns</td>
</tr>
<tr>
<td>t_{h(BCLK-AD)}</td>
<td>Address output hold time (in relation to BCLK)</td>
<td></td>
<td>0</td>
<td>ns</td>
</tr>
<tr>
<td>t_{h(RD-AD)}</td>
<td>Address output hold time (in relation to RD)</td>
<td></td>
<td>0</td>
<td>ns</td>
</tr>
<tr>
<td>t_{h(WR-AD)}</td>
<td>Address output hold time (in relation to WR)</td>
<td></td>
<td>(Note 2)</td>
<td>ns</td>
</tr>
<tr>
<td>t_{d(BCLK-CS)}</td>
<td>Chip select output delay time</td>
<td></td>
<td>25</td>
<td>ns</td>
</tr>
<tr>
<td>t_{h(BCLK-CS)}</td>
<td>Chip select output hold time (in relation to BCLK)</td>
<td></td>
<td>0</td>
<td>ns</td>
</tr>
<tr>
<td>t_{d(BCLK-ALE)}</td>
<td>ALE signal output delay time</td>
<td></td>
<td>15</td>
<td>ns</td>
</tr>
<tr>
<td>t_{h(BCLK-ALE)}</td>
<td>ALE signal output hold time</td>
<td></td>
<td>-4</td>
<td>ns</td>
</tr>
<tr>
<td>t_{d(BCLK-RD)}</td>
<td>RD signal output delay time</td>
<td></td>
<td>25</td>
<td>ns</td>
</tr>
<tr>
<td>t_{h(BCLK-RD)}</td>
<td>RD signal output hold time</td>
<td></td>
<td>0</td>
<td>ns</td>
</tr>
<tr>
<td>t_{d(BCLK-WR)}</td>
<td>WR signal output delay time</td>
<td></td>
<td>25</td>
<td>ns</td>
</tr>
<tr>
<td>t_{h(BCLK-WR)}</td>
<td>WR signal output hold time</td>
<td></td>
<td>0</td>
<td>ns</td>
</tr>
<tr>
<td>t_{d(BCLK-DB)}</td>
<td>Data output delay time (in relation to BCLK)</td>
<td></td>
<td>40</td>
<td>ns</td>
</tr>
<tr>
<td>t_{h(BCLK-DB)}</td>
<td>Data output hold time (in relation to BCLK)</td>
<td></td>
<td>0</td>
<td>ns</td>
</tr>
<tr>
<td>t_{d(DB-WR)}</td>
<td>Data output delay time (in relation to WR)</td>
<td></td>
<td>(Note 1)</td>
<td>ns</td>
</tr>
<tr>
<td>t_{h(WR-DB)}</td>
<td>Data output hold time (in relation to WR)</td>
<td></td>
<td>(Note 2)</td>
<td>ns</td>
</tr>
</tbody>
</table>

Notes:

1. Calculated according to the BCLK frequency as follows:

\[
\frac{0.5 \times 10^6}{f_{BCLK}} \times 40 \, [\text{ns}] \quad \text{if } f_{BCLK} \text{ is } 12.5 \, \text{MHz or less.}
\]

2. Calculated according to the BCLK frequency as follows:

\[
\frac{0.5 \times 10^6}{f_{BCLK}} \times 10 \, [\text{ns}] \quad \text{if } f_{BCLK} \text{ is } 12.5 \, \text{MHz or less.}
\]

3. This standard value shows the timing when the output is off, and does not show hold time of data bus. Hold time of data bus varies with capacitor volume and pull-up (pull-down) resistance value. Hold time of data bus is expressed in

\[
t = -CR \times \ln(1 - V_{OL}/V_{CC2})
\]

by a circuit of the right figure.

For example, when \(V_{OL} = 0.2V_{CC2}, \, C = 30 \, \text{pF}, \, R = 1 \, \text{k}\Omega \), hold time of output low level is

\[
t = -30 \, \text{pF} \times 1 \, \text{k}\Omega \times \ln(1 - 0.2V_{CC2}/V_{CC2}) = 6.7 \, \text{ns}.
\]

![Diagram](DBi.png)
Figure 5.15 Ports P0 to P10 Measurement Circuit
Memory Expansion Mode and Microprocessor Mode
(in no wait state setting)

\[V_{CC1} = V_{CC2} = 5V \]

Read timing

- **BCLK**
 - \(t_{BCLK-CS} \) (25ns(max.))
 - \(t_{BCLK-CS} \) (0ns(min.))
 - \(t_{BCLK-CS} \) (0ns(min.))
- **CSI**
 - \(t_{CS} \)
- **ADi**
 - \(t_{AD} \)
 - \(t_{AD} \) (40ns(max.))
- **BHE**
 - \(t_{BHE} \)
 - \(t_{BHE} \) (Hi-Z)
- **RD**
 - \(t_{RD} \)
- **DBi**
 - \(t_{Hi-Z} \)

Write timing

- **BCLK**
 - \(t_{BCLK-CS} \) (25ns(max.))
 - \(t_{BCLK-CS} \) (0ns(min.))
 - \(t_{BCLK-CS} \) (0ns(min.))
- **CSI**
 - \(t_{CS} \)
- **ADi**
 - \(t_{AD} \)
 - \(t_{AD} \) (40ns(max.))
- **BHE**
 - \(t_{BHE} \)
 - \(t_{BHE} \) (Hi-Z)
- **RD**
 - \(t_{WR} \)
 - \(t_{WR} \) (Hi-Z)
- **DBi**
 - \(t_{Hi-Z} \)

\[t_{BCLK-CS} = \frac{1}{f(BCLK)} \]

Measuring conditions
- \(V_{CC1} = V_{CC2} = 5V \)
- Input timing voltage: \(V_L = 0.8V, V_H = 2.0V \)
- Output timing voltage: \(V_{OL} = 0.4V, V_{OH} = 2.4V \)

Figure 5.16 Timing Diagram
Switching Characteristics

\[V_{CC1} = V_{CC2} = 5 \text{ V} \]

(V\(_{CC1}\) = V\(_{CC2}\) = 5 V, V\(_{SS}\) = 0 V, at T\(_{op}\) = -20°C to 85°C/-40°C to 85°C unless otherwise specified)

5.2.4.2 In 1 to 3 Waits Setting and When Accessing External Area

Table 5.37 Memory Expansion Mode and Microprocessor Mode (in 1 to 3 Waits Setting and When Accessing External Area)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Measuring Condition</th>
<th>Standard</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>t(_d)(BCLK-AD)</td>
<td>Address output delay time</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t(_h)(BCLK-AD)</td>
<td>Address output hold time (in relation to BCLK)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t(_h)(RD-AD)</td>
<td>Address output hold time (in relation to RD)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t(_h)(WR-AD)</td>
<td>Address output hold time (in relation to WR)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t(_h)(BCLK-CS)</td>
<td>Chip select output delay time</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t(_h)(BCLK-CS)</td>
<td>Chip select output hold time (in relation to BCLK)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t(_h)(BCLK-ALE)</td>
<td>ALE signal output delay time</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t(_h)(BCLK-ALE)</td>
<td>ALE signal output hold time</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t(_d)(BCLK-RD)</td>
<td>Chip select output delay time</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t(_d)(BCLK-RD)</td>
<td>Chip select output hold time (in relation to BCLK)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t(_d)(BCLK-RD)</td>
<td>RD signal output delay time</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t(_d)(BCLK-RD)</td>
<td>RD signal output hold time</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t(_d)(BCLK-WR)</td>
<td>WR signal output delay time</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t(_d)(BCLK-WR)</td>
<td>WR signal output hold time</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t(_d)(BCLK-DB)</td>
<td>Data output delay time (in relation to BCLK)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t(_d)(BCLK-DB)</td>
<td>Data output hold time (in relation to BCLK)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t(_d)(DB-WR)</td>
<td>Data output delay time (in relation to WR)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t(_d)(DB-WR)</td>
<td>Data output delay time (in relation to WR)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t(_h)(WR-DB)</td>
<td>Data output hold time (in relation to WR)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:

1. Calculated according to the BCLK frequency as follows:

\[
\frac{(n - 0.5) \times 10^9}{f(BCLK)} - 40[\text{ns}]
\]

n is 1 for 1 wait setting, 2 for 2 waits setting and 3 for 3 waits setting.

When n = 1, f(BCLK) is 12.5 MHz or less.

2. Calculated according to the BCLK frequency as follows:

\[
\frac{0.5 \times 10^9}{f(BCLK)} - 10[\text{ns}]
\]

3. This standard value shows the timing when the output is off, and does not show hold time of data bus.

Hold time of data bus varies with capacitor volume and pull-up (pull-down) resistance value.

Hold time of data bus is expressed in

\[
t = -CR \times \ln(1 - V_{OL}/V_{CC})
\]

by a circuit of the right figure.

For example, when V\(_{OL}\) = 0.2V\(_{CC2}\), C = 30 pF, R = 1 k\(\Omega\), hold time of output low level is

\[
t = -30 \text{ pF} \times 1 \text{ k}\Omega \times \ln(1 - 0.2V_{CC2}/V_{CC2}) = 6.7 \text{ ns}.
\]
Memory Expansion Mode and Microprocessor Mode
(in 1 to 3 waits setting and when accessing external area)

Read timing

Write timing

$V_{CC1} = V_{CC2} = 5V$

Measuring conditions
- $V_{CC1} = V_{CC2} = 5V$
- Input timing voltage: $V_{IL} = 0.8\ V$, $V_{IH} = 2.0\ V$
- Output timing voltage: $V_{OL} = 0.4\ V$, $V_{OH} = 2.4\ V$

n: 1 (when 1 wait) 2 (when 2 waits) 3 (when 3 waits)

$t_{cyc} = \frac{1}{f_{BCLK}}$

Figure 5.17 Timing Diagram
VCC1 = VCC2 = 5 V

Switching Characteristics
(VCC1 = VCC2 = 5 V, VSS = 0 V, at T_{opr} = -20°C to 85°C/-40°C to 85°C unless otherwise specified)

5.2.4.3 In 2 or 3 Waits Setting, and When Accessing External Area and Using Multiplexed Bus

Table 5.38 Memory Expansion Mode and Microprocessor Mode (in 2 or 3 Waits Setting, and When Accessing External Area and Using Multiplexed Bus) (5)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Measuring Condition</th>
<th>Standard Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_d(BCLK-AD)</td>
<td>Address output delay time</td>
<td></td>
<td>25 ns</td>
</tr>
<tr>
<td>t_h(BCLK-AD)</td>
<td>Address output hold time (in relation to BCLK)</td>
<td></td>
<td>0 ns</td>
</tr>
<tr>
<td>t_h(RD-AD)</td>
<td>Address output hold time (in relation to RD)</td>
<td>(Note 1)</td>
<td>ns</td>
</tr>
<tr>
<td>t_h(WR-AD)</td>
<td>Address output hold time (in relation to WR)</td>
<td>(Note 1)</td>
<td>ns</td>
</tr>
<tr>
<td>t_d(BCLK-CS)</td>
<td>Chip select output delay time</td>
<td></td>
<td>25 ns</td>
</tr>
<tr>
<td>t_h(BCLK-CS)</td>
<td>Chip select output hold time (in relation to BCLK)</td>
<td></td>
<td>0 ns</td>
</tr>
<tr>
<td>t_h(RD-CS)</td>
<td>Chip select output hold time (in relation to RD)</td>
<td>(Note 1)</td>
<td>ns</td>
</tr>
<tr>
<td>t_h(WR-CS)</td>
<td>Chip select output hold time (in relation to WR)</td>
<td>(Note 1)</td>
<td>ns</td>
</tr>
<tr>
<td>t_d(BCLK-RD)</td>
<td>RD signal output delay time</td>
<td></td>
<td>25 ns</td>
</tr>
<tr>
<td>t_h(BCLK-RD)</td>
<td>RD signal output hold time</td>
<td></td>
<td>0 ns</td>
</tr>
<tr>
<td>t_d(BCLK-WR)</td>
<td>WR signal output delay time</td>
<td></td>
<td>25 ns</td>
</tr>
<tr>
<td>t_h(BCLK-WR)</td>
<td>WR signal output hold time</td>
<td></td>
<td>0 ns</td>
</tr>
<tr>
<td>t_d(BCLK-DB)</td>
<td>Data output delay time (in relation to BCLK)</td>
<td></td>
<td>40 ns</td>
</tr>
<tr>
<td>t_d(BCLK-DB)</td>
<td>Data output time (in relation to BCLK)</td>
<td></td>
<td>0 ns</td>
</tr>
<tr>
<td>t_d(DB-WR)</td>
<td>Data output delay time (in relation to WR)</td>
<td>(Note 2)</td>
<td>ns</td>
</tr>
<tr>
<td>t_h(WR-DB)</td>
<td>Data output hold time (in relation to WR)</td>
<td>(Note 1)</td>
<td>ns</td>
</tr>
<tr>
<td>t_d(BCLK-ALE)</td>
<td>ALE signal output delay time (in relation to BCLK)</td>
<td></td>
<td>15 ns</td>
</tr>
<tr>
<td>t_h(BCLK-ALE)</td>
<td>ALE signal output hold time (in relation to BCLK)</td>
<td></td>
<td>-4 ns</td>
</tr>
<tr>
<td>t_d(AD-ALE)</td>
<td>ALE signal output delay time (in relation to Address)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>t_h(AD-ALE)</td>
<td>ALE signal output hold time (in relation to Address)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>t_d(AD-RD)</td>
<td>RD signal output delay from the end of address</td>
<td></td>
<td>0 ns</td>
</tr>
<tr>
<td>t_d(AD-WR)</td>
<td>WR signal output delay from the end of address</td>
<td></td>
<td>0 ns</td>
</tr>
<tr>
<td>t_dz(RD-AD)</td>
<td>Address output floating start time</td>
<td></td>
<td>8 ns</td>
</tr>
</tbody>
</table>

Notes:
1. Calculated according to the BCLK frequency as follows:
 \[0.5 \times 10^9 \times f_{BCLK} - 10 [\text{ns}] \]
2. Calculated according to the BCLK frequency as follows:
 \[(n - 0.5) \times 10^9 \times f_{BCLK} - 40 [\text{ns}] \]
 \[n \text{ is 2 for 2-wait setting, 3 for 3-wait setting.} \]
3. Calculated according to the BCLK frequency as follows:
 \[0.5 \times 10^9 \times f_{BCLK} - 25 [\text{ns}] \]
4. Calculated according to the BCLK frequency as follows:
 \[0.5 \times 10^9 \times f_{BCLK} - 15 [\text{ns}] \]
5. When using multiplex bus, set f_{BCLK} 12.5 MHz or less.
Memory Expansion Mode and Microprocessor Mode
(in 2 or 3 waits setting, and when accessing external area and using multiplexed bus)

Read timing

Write timing

Measuring conditions:
- $V_{CC1} = V_{CC2} = 5V$
- Input timing voltage: $V_L = 0.8 V$, $V_H = 2.0 V$
- Output timing voltage: $V_L = 0.4 V$, $V_H = 2.4 V$

Figure 5.18 Timing Diagram
Switching Characteristics

(V_{CC1} = V_{CC2} = 5 V, V_{SS} = 0 V, at T_{op} = -20°C to 85°C/-40°C to 85°C unless otherwise specified)

5.2.4.4 In Wait State Setting $2\phi + 3\phi, 2\phi + 4\phi, 3\phi + 4\phi,$ and $4\phi + 5\phi,$ and When Accessing External Area

Table 5.39 Memory Expansion Mode and Microprocessor Mode (in Wait State Setting $2\phi + 3\phi, 2\phi + 4\phi, 3\phi + 4\phi,$ and $4\phi + 5\phi,$ and When Accessing External Area)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Measuring Condition</th>
<th>Standard Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>$t_{(BCLK-AD)}$</td>
<td>Address output delay time</td>
<td>See Figure 5.15</td>
<td>25 ns</td>
</tr>
<tr>
<td>$t_{(BCLK-CS)}$</td>
<td>Chip select output delay time</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$t_{(BCLK-DB)}$</td>
<td>Data output delay time (in relation to BCLK)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$t_{(BCLK-DB)}$</td>
<td>Data output delay time (in relation to BCLK)^{(3)}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$t_{(WR-DB)}$</td>
<td>Data output delay time (in relation to WR)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$t_{(WR-DB)}$</td>
<td>Data output delay time (in relation to WR)^{(3)}</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:

1. Calculated according to the BCLK frequency as follows:

$$\frac{(n - 0.5) \times 10^9}{f_{BCLK}} - 40[ns]$$

n is 3 for $2\phi + 3\phi, 4$ for $2\phi + 4\phi, 4$ for $3\phi + 4\phi,$ and 5 for $4\phi + 5\phi.$

2. Calculated according to the BCLK frequency as follows:

$$\frac{0.5 \times 10^9}{f_{BCLK}} - 10[ns]$$

3. This standard value shows the timing when the output is off, and does not show hold time of data bus.

Hold time of data bus varies with capacitor volume and pull-up (pull-down) resistance value.

Hold time of data bus is expressed in

$$t = -CR \times \ln(1 - \frac{V_{OL}}{V_{CC2}})$$

by a circuit of the right figure.

For example, when $V_{OL} = 0.2V_{CC2}, C = 30 \text{ pF}, R = 1 \text{ k}\Omega,$ hold time of output low level is

$$t = -30 \text{ pF} \times 1 \text{ k}\Omega \times \ln(1 - 0.2V_{CC2}/V_{CC2})$$

$$= 6.7 \text{ ns}.$$

Note: The diagram shows a basic circuit with a resistor (R) and a capacitor (C).
Memory Expansion Mode and Microprocessor Mode
(in wait state setting $2\phi + 3\phi$, $2\phi + 4\phi$, $3\phi + 4\phi$, and $4\phi + 5\phi$, and when accessing external area)

Read timing

- BCLK
- CSI
- ADi
- BHE
- ALE
- RD
- DBi

Write timing

- BCLK
- CSI
- ADi
- BHE
- ALE
- WR, WRI
- WRH
- DBi

\[t_{\text{cyc}} = \frac{1}{f(\text{BCLK})} \]

Measuring conditions

- $V_{CC1} = V_{CC2} = 5V$
- Input timing voltage: $V_{IL} = 0.8V, V_{IH} = 2.0V$
- Output timing voltage: $V_{OL} = 0.4V, V_{OH} = 2.4V$

- n: 3 (when $2\phi + 3\phi$)
- 4 (when $2\phi + 4\phi$ or $3\phi + 4\phi$)
- 5 (when $4\phi + 5\phi$)

Figure 5.19 Timing Diagram
Switching Characteristics

(V\text{CC1} = V\text{CC2} = 5 \text{ V}, V\text{SS} = 0 \text{ V}, \text{at } T_{\text{opr}} = -20^\circ \text{C to } 85^\circ \text{C unless otherwise specified})

5.2.4.5 In Wait State Setting 2\phi + 3\phi, 2\phi + 4\phi, 3\phi + 4\phi, and 4\phi + 5\phi, and When Inserting 1 to 3 Recovery Cycles and Accessing External Area

Table 5.40 Memory Expansion and Microprocessor Modes (in Wait State Setting 2\phi + 3\phi, 2\phi + 4\phi, 3\phi + 4\phi, and 4\phi + 5\phi, and When Inserting 1 to 3 Recovery Cycles and Accessing External Area)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Measuring Condition</th>
<th>Standard Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_{\text{BCLK-AD}})</td>
<td>Address output delay time</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>(t_{\text{RD-AD}})</td>
<td>Address output hold time (in relation to RD)</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>(t_{\text{WR-AD}})</td>
<td>Address output hold time (in relation to WR)</td>
<td></td>
<td>(Note 2)</td>
</tr>
<tr>
<td>(t_{\text{BCLK-CS}})</td>
<td>Chip select output delay time</td>
<td></td>
<td>25</td>
</tr>
<tr>
<td>(t_{\text{BCLK-CS}})</td>
<td>Chip select output hold time (in relation to BCLK)</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>(t_{\text{BCLK-ALE}})</td>
<td>ALE signal output delay time</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>(t_{\text{BCLK-ALE}})</td>
<td>ALE signal output hold time</td>
<td></td>
<td>-4</td>
</tr>
<tr>
<td>(t_{\text{BCLK-RD}})</td>
<td>RD signal output delay time</td>
<td></td>
<td>25</td>
</tr>
<tr>
<td>(t_{\text{BCLK-WR}})</td>
<td>WR signal output delay time</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>(t_{\text{DB-WR}})</td>
<td>Data output delay time (in relation to WR)</td>
<td></td>
<td>40</td>
</tr>
<tr>
<td>(t_{\text{DB-WR}})</td>
<td>Data output delay time (in relation to BCLK)</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>(t_{\text{WR-WR}})</td>
<td>Data output delay time (in relation to WR)</td>
<td></td>
<td>(Note 1)</td>
</tr>
<tr>
<td>(t_{\text{WR-WR}})</td>
<td>Data output hold time (in relation to WR)</td>
<td></td>
<td>(Note 2)</td>
</tr>
</tbody>
</table>

Notes:

1. Calculated according to the BCLK frequency as follows:
 \[n \times 10^9 \frac{f_{\text{BCLK}}}{40\text{[ns]}} \]
 \(n\) is 3 for 2\phi + 3\phi, 4 for 2\phi + 4\phi, 4 for 3\phi + 4\phi, and 5 for 4\phi + 5\phi.

2. Calculated according to the BCLK frequency as follows:
 \[m \times 10^9 \frac{f_{\text{BCLK}}}{10\text{[ns]}} \]
 \(m\) is 1 when 1 recovery cycle is inserted, 2 when 2 recovery cycles are inserted, and 3 when 3 recovery cycles are inserted.

3. This standard value shows the timing when the output is off, and does not show hold time of data bus.
 Hold time of data bus varies with capacitor volume and pull-up (pull-down) resistance value.
 Hold time of data bus is expressed in
 \[t = -CR \times \ln(1-V_{\text{OL}}/V_{\text{CC2}}) \]
 by a circuit of the right figure.
 For example, when \(V_{\text{OL}} = 0.2V_{\text{CC2}}\), \(C = 30\text{ pF, R = 1 k}\Omega\), hold time of output low level is
 \[t = -30\text{ pF} \times 1\text{ k}\Omega \times \ln(0.2V_{\text{CC2}}/V_{\text{CC2}}) \]
 = 6.7 ns

4. Calculated according to the BCLK frequency as follows:
 \[m \times 10^9 \frac{f_{\text{BCLK}}}{0\text{[ns]}} \]
 \(m\) is 1 when 1 recovery cycle is inserted, 2 when 2 recovery cycles are inserted, and 3 when 3 recovery cycles are inserted.
Memory Expansion Mode and Microprocessor Mode
(in wait state setting 2 ϕ + 3 ϕ, 2 ϕ + 4 ϕ, 3 ϕ + 4 ϕ, and 4 ϕ + 5 ϕ, and
when inserting 1 to 3 recovery cycles and accessing external area)

Read timing

Write timing

$V_{CC1} = V_{CC2} = 5V$

Figure 5.20 Timing Diagram
5.3 Electrical Characteristics (VCC1 = VCC2 = 3 V)

5.3.1 Electrical Characteristics

\[V_{CC1} = V_{CC2} = 3 \text{ V} \]

Table 5.41 Electrical Characteristics (1) (1)

\[V_{CC1} = V_{CC2} = 2.7 \text{ to } 3.3 \text{ V}, V_{SS} = 0 \text{ V at } T_{opr} = -20^\circ \text{C} \text{ to } 85^\circ \text{C}, f_{(BCLK)} = 20 \text{ MHz unless otherwise specified.} \]

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Measuring Condition</th>
<th>Standard</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOH</td>
<td>High output voltage</td>
<td>P6_0 to P6_7, P7_0 to P7_7, P8_0 to P8_4, P8_6, P8_7, P9_0 to P9_7, P10_0 to P10_7</td>
<td>I_{OH} = -1 mA</td>
<td>V_{CC1} – 0.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7</td>
<td>I_{OH} = -1 mA</td>
<td>V_{CC2} – 0.5</td>
</tr>
<tr>
<td>VOH</td>
<td>High output voltage</td>
<td>XOUT</td>
<td>HIGHPOWER</td>
<td>I_{OH} = -0.1 mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LOWPOWER</td>
<td>I_{OH} = -50 \mu A</td>
<td>V_{CC1} – 0.5</td>
</tr>
<tr>
<td>VOH</td>
<td>High output voltage</td>
<td>XOUT</td>
<td>With no load applied</td>
<td>1.5</td>
</tr>
<tr>
<td>VOL</td>
<td>Low output voltage</td>
<td>P6_0 to P6_7, P7_0 to P7_7, P8_0 to P8_7, P9_0 to P9_7, P10_0 to P10_7</td>
<td>I_{OL} = 1 mA</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7</td>
<td>I_{OL} = 1 mA</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CEC</td>
<td>I_{OL} = 1 mA</td>
<td>0</td>
</tr>
<tr>
<td>VOL</td>
<td>Low output voltage</td>
<td>XOUT</td>
<td>HIGHPOWER</td>
<td>I_{OL} = 0.1 mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LOWPOWER</td>
<td>I_{OL} = 50 \mu A</td>
<td>0.5</td>
</tr>
<tr>
<td>VOL</td>
<td>Low output voltage</td>
<td>XOUT</td>
<td>With no load applied</td>
<td>0</td>
</tr>
<tr>
<td>V_{T+}-V_{T-}</td>
<td>Hysteresis</td>
<td>HOLD, RDY, TA0IN to TA4IN, TB0IN to TB5IN, INT0 to INT7, NM1, ADTRG, CTS0 to CTS2, CTS5 to CTS7, SCL0 to SCL2, SCL5 to SCL7, SDA0 to SDA2, SDA5 to SDA7, CLK0 to CLK7, TA0OUT to TA4OUT, Ki0 to Ki7, RXD0 to RXD2, RXD5 to RXD7, SIN3, SIN4, SD, PMCO, PMC1, SCLMM, SDAMM, ZP, IDU, IDV, IDW</td>
<td>0.2</td>
<td>1.0</td>
</tr>
<tr>
<td>I_{IH}</td>
<td>High input current</td>
<td>P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0 to P7_7, P8_0 to P8_7, P9_0 to P9_7, P10_0 to P10_7, XIN, RESET, CNVSS, BYTE</td>
<td>V_{I} = 3 V</td>
<td>4.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>XIN, CEC</td>
<td>0.2</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>XIN, RESET, CNVSS, BYTE</td>
<td>0.2</td>
<td>1.8</td>
</tr>
<tr>
<td>I_{IL}</td>
<td>Low input current</td>
<td>P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0 to P7_7, P8_0 to P8_7, P9_0 to P9_7, P10_0 to P10_7, XIN, RESET, CNVSS, BYTE</td>
<td>V_{I} = 0 V</td>
<td>-4.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>XIN, RESET, CNVSS, BYTE</td>
<td>0.2</td>
<td>1.8</td>
</tr>
<tr>
<td>R_{PULLUP}</td>
<td>Pull-up resistance</td>
<td>P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0 to P7_7, P8_0 to P8_7, P9_0 to P9_7, P10_0 to P10_7, XIN, RESET, CNVSS, BYTE</td>
<td>V_{I} = 0 V</td>
<td>50</td>
</tr>
<tr>
<td>R_{XIN}</td>
<td>Feedback resistance</td>
<td>XIN</td>
<td>0.8</td>
<td>M\Omega</td>
</tr>
<tr>
<td>R_{XCIN}</td>
<td>Feedback resistance</td>
<td>XCIN</td>
<td>8</td>
<td>M\Omega</td>
</tr>
<tr>
<td>V_{RAM}</td>
<td>RAM retention voltage</td>
<td>In stop mode</td>
<td>1.8</td>
<td>V</td>
</tr>
</tbody>
</table>

Note:
1. When \(V_{CC1} \neq V_{CC2} \), refer to 5 V, 3 V, or 1.8 V standard depending on the voltage.
Electrical Characteristics (2)

$V_{CC1} = V_{CC2} = 3\, \text{V}$

Notes:
1. This indicates the memory in which the program to be executed exists.
2. A/D conversion is executed in repeat mode.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Measuring Condition</th>
<th>Standard Min.</th>
<th>Typical (Typ.)</th>
<th>Standard Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_{CC}</td>
<td>Power supply current</td>
<td>High-speed mode $f_{BCLK} = 20, \text{MHz}$ (no division) $XIN = 20, \text{MHz}$ (square wave) 125 kHz on-chip oscillator stopped $CM15 = 1$ (drive capacity High) A/D converter stopped</td>
<td>9.5</td>
<td>mA</td>
<td>10.2</td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$f_{BCLK} = 20, \text{MHz}$ $XIN = 20, \text{MHz}$ (square wave) 125 kHz on-chip oscillator stopped $CM15 = 1$ (drive capacity High) A/D converter operating (2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$f_{BCLK} = 20, \text{MHz}$ $XIN = 20, \text{MHz}$ (square wave) 125 kHz on-chip oscillator stopped $CM15 = 0$ (drive capacity Low) A/D converter stopped</td>
<td>9.2</td>
<td>mA</td>
<td>7.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$f_{BCLK} = 20, \text{MHz}$ $XIN = 20, \text{MHz}$ (square wave) 125 kHz on-chip oscillator stopped $CM15 = 1$ (drive capacity High) PCLKSTP1 = FF (peripheral clock stopped)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$f_{BCLK} = 20, \text{MHz}$ $XIN = 20, \text{MHz}$ (square wave) 125 kHz on-chip oscillator stopped $CM15 = 0$ (drive capacity Low) PCLKSTP1 = FF (peripheral clock stopped)</td>
<td>7.6</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>40 MHz on-chip oscillator mode</td>
<td>40 MHz on-chip oscillator on, divide-by-2 ($f_{BCLK} = 20, \text{MHz}$) 125 kHz on-chip oscillator stopped</td>
<td>9.0</td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>125 kHz on-chip oscillator mode</td>
<td>Main clock stopped 40 MHz on-chip oscillator stopped 125 kHz on-chip oscillator stopped</td>
<td>450.0</td>
<td>μA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>40 MHz on-chip oscillator stopped $f_{BCLK} = 32, \text{MHz}$ FMR22 = 1 (slow read mode)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Low-power mode</td>
<td>FMR 22 = FMR23 = 1 (in low-current consumption read mode) On flash memory (1)</td>
<td>80.0</td>
<td>μA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Wait mode</td>
<td>$f_{BCLK} = 32, \text{kHz}$ Main clock stopped 40 MHz on-chip oscillator stopped 125 kHz on-chip oscillator on, no division PM25 = 1 (peripheral function clock fC operating) $T_{opr} = 25^\circ\text{C}$</td>
<td>5.3</td>
<td>μA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Real-time clock operating</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Stop mode</td>
<td>$T_{opr} = 25^\circ\text{C}$</td>
<td>2.2</td>
<td>μA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>During flash memory program</td>
<td>$f_{BCLK} = 10, \text{MHz}$, PM17 = 1 (one wait) $V_{CC1} = 3.0, \text{V}$</td>
<td>20.0</td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>During flash memory erase</td>
<td>$f_{BCLK} = 10, \text{MHz}$, PM17 = 1 (one wait) $V_{CC1} = 3.0, \text{V}$</td>
<td>30.0</td>
<td>mA</td>
</tr>
</tbody>
</table>
5.3.2 Timing Requirements (Peripheral Functions and Others)

\(V_{CC1} = V_{CC2} = 3\, \text{V}\)

(V\(_{CC1} = V_{CC2} = 3\, \text{V}, V_{SS} = 0\, \text{V}\), at \(T_{opr} = -20^\circ\text{C}\) to \(85^\circ\text{C}\)/\(-40^\circ\text{C}\) to \(85^\circ\text{C}\) unless otherwise specified)

5.3.2.1 Reset Input (RESET Input)

Table 5.43 Reset Input (RESET Input)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Standard</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_{w(RSTL)})</td>
<td>RESET input low pulse width</td>
<td>10</td>
<td>(\mu\text{s})</td>
</tr>
</tbody>
</table>

Figure 5.21 Reset Input (RESET Input)

5.3.2.2 External Clock Input

Table 5.44 External Clock Input (XIN Input) (1)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Standard</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_c)</td>
<td>External clock input cycle time</td>
<td>50</td>
<td>ns</td>
</tr>
<tr>
<td>(t_{w(H)})</td>
<td>External clock input high pulse width</td>
<td>20</td>
<td>ns</td>
</tr>
<tr>
<td>(t_{w(L)})</td>
<td>External clock input low pulse width</td>
<td>20</td>
<td>ns</td>
</tr>
<tr>
<td>(t_r)</td>
<td>External clock rise time</td>
<td>9</td>
<td>ns</td>
</tr>
<tr>
<td>(t_f)</td>
<td>External clock fall time</td>
<td>9</td>
<td>ns</td>
</tr>
</tbody>
</table>

Note:
1. The condition is \(V_{CC1} = V_{CC2} = 2.7\) to \(3.0\, \text{V}\).

Figure 5.22 External Clock Input (XIN Input)
Timing Requirements

\(V_{CC1} = V_{CC2} = 3 \, V \), \(V_{SS} = 0 \, V \), at \(T_{opr} = -20^\circ C \) to \(-40^\circ C \) to \(85^\circ C \) unless otherwise specified

5.3.2.3 Timer A Input

Table 5.45 Timer A Input (Counter Input in Event Counter Mode)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Standard</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_c(TA))</td>
<td>TAiIN input cycle time</td>
<td>150</td>
<td>ns</td>
</tr>
<tr>
<td>(t_w(TAH))</td>
<td>TAiIN input high pulse width</td>
<td>60</td>
<td>ns</td>
</tr>
<tr>
<td>(t_w(TAL))</td>
<td>TAiIN input low pulse width</td>
<td>60</td>
<td>ns</td>
</tr>
</tbody>
</table>

Table 5.46 Timer A Input (Gating Input in Timer Mode)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Standard</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_c(TA))</td>
<td>TAiIN input cycle time</td>
<td>600</td>
<td>ns</td>
</tr>
<tr>
<td>(t_w(TAH))</td>
<td>TAiIN input high pulse width</td>
<td>300</td>
<td>ns</td>
</tr>
<tr>
<td>(t_w(TAL))</td>
<td>TAiIN input low pulse width</td>
<td>300</td>
<td>ns</td>
</tr>
</tbody>
</table>

Table 5.47 Timer A Input (External Trigger Input in One-Shot Timer Mode)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Standard</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_c(TA))</td>
<td>TAiIN input cycle time</td>
<td>300</td>
<td>ns</td>
</tr>
<tr>
<td>(t_w(TAH))</td>
<td>TAiIN input high pulse width</td>
<td>150</td>
<td>ns</td>
</tr>
<tr>
<td>(t_w(TAL))</td>
<td>TAiIN input low pulse width</td>
<td>150</td>
<td>ns</td>
</tr>
</tbody>
</table>

Table 5.48 Timer A Input (External Trigger Input in Pulse Width Modulation Mode and Programmable Output Mode)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Standard</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_w(TAH))</td>
<td>TAiIN input high pulse width</td>
<td>150</td>
<td>ns</td>
</tr>
<tr>
<td>(t_w(TAL))</td>
<td>TAiIN input low pulse width</td>
<td>150</td>
<td>ns</td>
</tr>
</tbody>
</table>

Figure 5.23 Timer A Input
Timing Requirements

\(V_{CC1} = V_{CC2} = 3 \, V \), \(V_{SS} = 0 \, V \), at \(T_{opr} = -20^\circ C \) to \(85^\circ C \) unless otherwise specified

Table 5.49 Timer A Input (Two-Phase Pulse Input in Event Counter Mode)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Standard</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_{c(TA)})</td>
<td>TAIIN input cycle time</td>
<td>2</td>
<td>(\mu s)</td>
</tr>
<tr>
<td>(t_{su(TAIN-TAOUT)})</td>
<td>TAOOUT input setup time</td>
<td>500</td>
<td>ns</td>
</tr>
<tr>
<td>(t_{su(TAOUT-TAIN)})</td>
<td>TAIN input setup time</td>
<td>500</td>
<td>ns</td>
</tr>
</tbody>
</table>

![Figure 5.24 Timer A Input (Two-Phase Pulse Input in Event Counter Mode)](image-url)
Timing Requirements

\(V_{CC1} = V_{CC2} = 3 \, V \)

\(V_{CC1} = V_{CC2} = 3 \, V, \, V_{SS} = 0 \, V, \) at \(T_{opr} = -20^\circ C \) to \(85^\circ C \), \(-40^\circ C \) to \(85^\circ C \) unless otherwise specified

5.3.2.4 Timer B Input

Table 5.50 Timer B Input (Counter Input in Event Counter Mode)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Standard Unit</th>
<th>Min.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_c(TB))</td>
<td>TBiIN input cycle time (counted on one edge)</td>
<td>ns</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>(t_w(TBH))</td>
<td>TBiIN input high pulse width (counted on one edge)</td>
<td>ns</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>(t_w(TBL))</td>
<td>TBiIN input low pulse width (counted on one edge)</td>
<td>ns</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>(t_c(TB))</td>
<td>TBiIN input cycle time (counted on both edges)</td>
<td>ns</td>
<td>300</td>
<td></td>
</tr>
<tr>
<td>(t_w(TBH))</td>
<td>TBiIN input high pulse width (counted on both edges)</td>
<td>ns</td>
<td>120</td>
<td></td>
</tr>
<tr>
<td>(t_w(TBL))</td>
<td>TBiIN input low pulse width (counted on both edges)</td>
<td>ns</td>
<td>120</td>
<td></td>
</tr>
</tbody>
</table>

Table 5.51 Timer B Input (Pulse Period Measurement Mode)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Standard Unit</th>
<th>Min.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_c(TB))</td>
<td>TBiIN input cycle time</td>
<td>ns</td>
<td>600</td>
<td></td>
</tr>
<tr>
<td>(t_w(TBH))</td>
<td>TBiIN input high pulse width</td>
<td>ns</td>
<td>300</td>
<td></td>
</tr>
<tr>
<td>(t_w(TBL))</td>
<td>TBiIN input low pulse width</td>
<td>ns</td>
<td>300</td>
<td></td>
</tr>
</tbody>
</table>

Table 5.52 Timer B Input (Pulse Width Measurement Mode)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Standard Unit</th>
<th>Min.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_c(TB))</td>
<td>TBiIN input cycle time</td>
<td>ns</td>
<td>600</td>
<td></td>
</tr>
<tr>
<td>(t_w(TBH))</td>
<td>TBiIN input high pulse width</td>
<td>ns</td>
<td>300</td>
<td></td>
</tr>
<tr>
<td>(t_w(TBL))</td>
<td>TBiIN input low pulse width</td>
<td>ns</td>
<td>300</td>
<td></td>
</tr>
</tbody>
</table>
Timing Requirements
($V_{CC1} = V_{CC2} = 3\, \text{V}, V_{SS} = 0\, \text{V}, \text{at } T_{opr} = -20^\circ\text{C to } 85^\circ\text{C/-40}^\circ\text{C to } 85^\circ\text{C unless otherwise specified}$)

5.3.2.5 Serial Interface

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Standard</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>$t_{c(CK)}$</td>
<td>CLK\text{i} input cycle time</td>
<td>300</td>
<td>ns</td>
</tr>
<tr>
<td>$t_{w(CH)}$</td>
<td>CLK\text{i} input high pulse width</td>
<td>150</td>
<td>ns</td>
</tr>
<tr>
<td>$t_{w(CL)}$</td>
<td>CLK\text{i} input low pulse width</td>
<td>150</td>
<td>ns</td>
</tr>
<tr>
<td>$t_{d(C-Q)}$</td>
<td>TXDi output delay time</td>
<td>160</td>
<td>ns</td>
</tr>
<tr>
<td>$t_{h(C-Q)}$</td>
<td>TXDi hold time</td>
<td>0</td>
<td>ns</td>
</tr>
<tr>
<td>$t_{u(D-C)}$</td>
<td>RXDi input setup time</td>
<td>100</td>
<td>ns</td>
</tr>
<tr>
<td>$t_{h(C-D)}$</td>
<td>RXDi input hold time</td>
<td>90</td>
<td>ns</td>
</tr>
</tbody>
</table>

Table 5.53 Serial Interface

![Serial Interface Diagram](image)

Figure 5.26 Serial Interface

5.3.2.6 External Interrupt INT_i Input

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Standard</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>$t_{w(INH)}$</td>
<td>INT_i input high pulse width</td>
<td>380</td>
<td>ns</td>
</tr>
<tr>
<td>$t_{w(INL)}$</td>
<td>INT_i input low pulse width</td>
<td>380</td>
<td>ns</td>
</tr>
</tbody>
</table>

Table 5.54 External Interrupt INT_i Input

![External Interrupt Diagram](image)

Figure 5.27 External Interrupt INT_i Input
Timing Requirements
(\(V_{CC1} = V_{CC2} = 3\) V, \(V_{SS} = 0\) V, at \(T_{opr} = -20^\circ C\) to \(85^\circ C\) unless otherwise specified)

5.3.2.7 Multi-master I\(^2\)C-bus

Table 5.55 Multi-master I\(^2\)C-bus

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Standard Clock Mode</th>
<th>Fast-mode</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Min.</td>
<td>Max.</td>
<td>Min.</td>
</tr>
<tr>
<td>(t_{BUF})</td>
<td>Bus free time</td>
<td>4.7</td>
<td>1.3</td>
<td></td>
</tr>
<tr>
<td>(t_{HD;STA})</td>
<td>Hold time in start condition</td>
<td>4.0</td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td>(t_{LOW})</td>
<td>Hold time in SCL clock 0 status</td>
<td>4.7</td>
<td>1.3</td>
<td></td>
</tr>
<tr>
<td>(t_{R})</td>
<td>SCL, SDA signals’ rising time</td>
<td></td>
<td>1000</td>
<td>20 + 0.1 Cb</td>
</tr>
<tr>
<td>(t_{HD;DAT})</td>
<td>Data hold time</td>
<td>0</td>
<td>0</td>
<td>0.9</td>
</tr>
<tr>
<td>(t_{HIGH})</td>
<td>Hold time in SCL clock 1 status</td>
<td>4.0</td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td>(f_{f})</td>
<td>SCL, SDA signals’ falling time</td>
<td></td>
<td>300</td>
<td>20 + 0.1 Cb</td>
</tr>
<tr>
<td>(t_{su;DAT})</td>
<td>Data setup time</td>
<td>250</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>(t_{su;STA})</td>
<td>Setup time in restart condition</td>
<td>4.7</td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td>(t_{su;STO})</td>
<td>Stop condition setup time</td>
<td>4.0</td>
<td>0.6</td>
<td></td>
</tr>
</tbody>
</table>

Figure 5.28 Multi-master I\(^2\)C-bus
V_{CC1} = V_{CC2} = 3 \, V

Timing Requirements

\(V_{CC1} = V_{CC2} = 3 \, V, \, V_{SS} = 0 \, V, \, \text{at} \, T_{opr} = -20^\circ C \, \text{to} \, 85^\circ C \, \text{and} \, -40^\circ C \, \text{to} \, 85^\circ C \, \text{unless otherwise specified} \)

5.3.3 Timing Requirements (Memory Expansion Mode and Microprocessor Mode)

Table 5.56 Memory Expansion Mode and Microprocessor Mode

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Standard</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_{ac1}(RD-DB))</td>
<td>Data input access time (for setting with no wait)</td>
<td>(Note 1) ns</td>
<td></td>
</tr>
<tr>
<td>(t_{ac2}(RD-DB))</td>
<td>Data input access time (for setting with wait)</td>
<td>(Note 2) ns</td>
<td></td>
</tr>
<tr>
<td>(t_{ac3}(RD-DB))</td>
<td>Data input access time (when accessing multiplex bus area)</td>
<td>(Note 3) ns</td>
<td></td>
</tr>
<tr>
<td>(t_{ac4}(RD-DB))</td>
<td>Data input access time (for setting with 2 (\phi) + 3 (\phi) or more)</td>
<td>(Note 4) ns</td>
<td></td>
</tr>
<tr>
<td>(t_{su}(DB-RD))</td>
<td>Data input setup time</td>
<td>50 ns</td>
<td></td>
</tr>
<tr>
<td>(t_{su}(RDY-BCLK))</td>
<td>(RDY) input setup time</td>
<td>85 ns</td>
<td></td>
</tr>
<tr>
<td>(t_{h}(RD-DB))</td>
<td>Data input hold time</td>
<td>0 ns</td>
<td></td>
</tr>
<tr>
<td>(t_{h}(BCLK-RDY))</td>
<td>(RDY) input hold time</td>
<td>0 ns</td>
<td></td>
</tr>
</tbody>
</table>

Notes:

1. Calculated according to the BCLK frequency as follows:
 \[
 \frac{0.5 \times 10^6}{f_{BCLK}} - 60[ns]
 \]

2. Calculated according to the BCLK frequency as follows:
 \[
 \frac{(n + 0.5) \times 10^6}{f_{BCLK}} - 60[ns] \quad n \text{ is 1 for 1 wait setting, 2 for 2 waits setting and 3 for 3 waits setting.}
 \]

3. Calculated according to the BCLK frequency as follows:
 \[
 \frac{(n - 0.5) \times 10^6}{f_{BCLK}} - 60[ns] \quad n \text{ is 2 for 2 waits setting, 3 for 3 waits setting.}
 \]

4. Calculated according to the BCLK frequency as follows:
 \[
 \frac{n \times 10^6}{f_{BCLK}} - 60[ns] \quad n \text{ is 3 for 2 \(\phi \) + 3 \(\phi \), 4 for 2 \(\phi \) + 4 \(\phi \), 4 for 3 \(\phi \) + 4 \(\phi \), 5 for 4 \(\phi \) + 5 \(\phi \).}
 \]
Memory Expansion Mode and Microprocessor Mode

(Effective in wait state setting)

$V_{CC1} = V_{CC2} = 3 \text{ V}$

![Timing Diagram](image)

Measuring conditions
- $V_{CC1} = V_{CC2} = 3 \text{ V}$
- Input timing voltage: $V_{IL} = 0.6 \text{ V}, \: V_{IH} = 2.4 \text{ V}$
- Output timing voltage: $V_{OL} = 1.5 \text{ V}, \: V_{OH} = 1.5 \text{ V}$

Figure 5.29 Timing Diagram
5.3.4 Switching Characteristics (Memory Expansion Mode and Microprocessor Mode)

\(V_{CC1} = V_{CC2} = 3 \, \text{V} \)

5.3.4.1 In No Wait State Setting

Table 5.57 Memory Expansion and Microprocessor Modes (in No Wait State Setting)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Measuring Condition</th>
<th>Standard Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_{(BCLK-AD)})</td>
<td>Address output delay time</td>
<td></td>
<td>Min. 30 ns</td>
</tr>
<tr>
<td>(t_{(BCLK-AD)})</td>
<td>Address output hold time (in relation to BCLK)</td>
<td></td>
<td>Max. ns</td>
</tr>
<tr>
<td>(t_{(RD-AD)})</td>
<td>Address output hold time (in relation to RD)</td>
<td></td>
<td>0 ns</td>
</tr>
<tr>
<td>(t_{(WR-AD)})</td>
<td>Address output hold time (in relation to WR)</td>
<td></td>
<td>0 ns</td>
</tr>
<tr>
<td>(t_{(BCLK-CS)})</td>
<td>Chip select output delay time</td>
<td></td>
<td>30 ns</td>
</tr>
<tr>
<td>(t_{(BCLK-CS)})</td>
<td>Chip select output hold time (in relation to BCLK)</td>
<td></td>
<td>Max. ns</td>
</tr>
<tr>
<td>(t_{(BCLK-ALE)})</td>
<td>ALE signal output delay time</td>
<td></td>
<td>25 ns</td>
</tr>
<tr>
<td>(t_{(BCLK-ALE)})</td>
<td>ALE signal output hold time</td>
<td></td>
<td>–4 ns</td>
</tr>
<tr>
<td>(t_{(BCLK-RD)})</td>
<td>RD signal output delay time</td>
<td></td>
<td>30 ns</td>
</tr>
<tr>
<td>(t_{(BCLK-RD)})</td>
<td>RD signal output hold time</td>
<td></td>
<td>0 ns</td>
</tr>
<tr>
<td>(t_{(BCLK-WR)})</td>
<td>WR signal output delay time</td>
<td></td>
<td>30 ns</td>
</tr>
<tr>
<td>(t_{(BCLK-WR)})</td>
<td>WR signal output hold time</td>
<td></td>
<td>0 ns</td>
</tr>
<tr>
<td>(t_{(BCLK-DB)})</td>
<td>Data output delay time (in relation to BCLK)</td>
<td></td>
<td>40 ns</td>
</tr>
<tr>
<td>(t_{(BCLK-DB)})</td>
<td>Data output hold time (in relation to BCLK)</td>
<td></td>
<td>0 ns</td>
</tr>
<tr>
<td>(t_{(DB-WR)})</td>
<td>Data output delay time (in relation to WR)</td>
<td></td>
<td>(Note 1) ns</td>
</tr>
<tr>
<td>(t_{(WR-DB)})</td>
<td>Data output hold time (in relation to WR)</td>
<td></td>
<td>(Note 2) ns</td>
</tr>
</tbody>
</table>

Notes:
1. Calculated according to the BCLK frequency as follows:
\[
\frac{0.5 \times 10^6}{f_{(BCLK)}} - 40[\text{ns}]
\]
\(f_{(BCLK)} \) is 12.5 MHz or less.

2. Calculated according to the BCLK frequency as follows:
\[
\frac{0.5 \times 10^6}{f_{(BCLK)}} - 10[\text{ns}]
\]

3. This standard value shows the timing when the output is off, and does not show hold time of data bus.
 Hold time of data bus varies with capacitor volume and pull-up (pull-down) resistance value.
 Hold time of data bus is expressed in
 \[t = -CR \times \ln(1 - V_{OL}/V_{CC2}) \]
 by a circuit of the right figure.
 For example, when \(V_{OL} = 0.2V_{CC2}, C = 30 \, \text{pF}, R = 1 \, \text{k}\Omega, \)
 hold time of output low level is
 \[
 t = -30 \, \text{pF} \times 1 \, \text{k}\Omega \times \ln(1 - 0.2V_{CC2}/V_{CC2}) = 6.7 \, \text{ns}.
 \]
Figure 5.30 Ports P0 to P10 Measurement Circuit
Memory Expansion Mode and Microprocessor Mode
(in no wait state setting)

Read timing

Write timing

Measuring conditions
- $V_{CC1} = V_{CC2} = 3V$
- Input timing voltage: $V_{IL} = 0.6\, V$, $V_{IH} = 2.4\, V$
- Output timing voltage: $V_{OL} = 1.5\, V$, $V_{OH} = 1.5\, V$

Figure 5.31 Timing Diagram
Switching Characteristics

\(V_{CC1} = V_{CC2} = 3 \, \text{V}, \, V_{SS} = 0 \, \text{V}, \, \text{at } T_{opr} = -20^\circ \text{C to } 85^\circ \text{C/} -40^\circ \text{C to } 85^\circ \text{C unless otherwise specified} \)

5.3.4.2 In 1 to 3 Waits Setting and When Accessing External Area

Table 5.58 Memory Expansion Mode and Microprocessor Mode (in 1 to 3 Waits Setting and When Accessing External Area)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Measuring Condition</th>
<th>Standard Unit</th>
<th>Min.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_{d(BCLK-AD)})</td>
<td>Address output delay time</td>
<td>See Figure 5.30</td>
<td></td>
<td>30</td>
<td>ns</td>
</tr>
<tr>
<td>(t_{h(BCLK-AD)})</td>
<td>Address output hold time (in relation to BCLK)</td>
<td></td>
<td>0</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>(t_{h(RD-AD)})</td>
<td>Address output hold time (in relation to RD)</td>
<td></td>
<td>0</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>(t_{h(WR-AD)})</td>
<td>Address output hold time (in relation to WR)</td>
<td></td>
<td>(Note 2)</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>(t_{h(BCLK-CS)})</td>
<td>Chip select output delay time</td>
<td></td>
<td>30</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>(t_{h(BCLK-CS)})</td>
<td>Chip select output hold time (in relation to BCLK)</td>
<td></td>
<td>0</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>(t_{h(BCLK-ALE)})</td>
<td>ALE signal output delay time</td>
<td></td>
<td>25</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>(t_{h(BCLK-ALE)})</td>
<td>ALE signal output hold time</td>
<td></td>
<td>-4</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>(t_{h(BCLK-RD)})</td>
<td>RD signal output delay time</td>
<td></td>
<td>30</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>(t_{h(BCLK-RD)})</td>
<td>RD signal output hold time</td>
<td></td>
<td>0</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>(t_{h(BCLK-WR)})</td>
<td>WR signal output delay time</td>
<td></td>
<td>30</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>(t_{h(BCLK-WR)})</td>
<td>WR signal output hold time</td>
<td></td>
<td>0</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>(t_{h(BCLK-DB)})</td>
<td>Data output delay time (in relation to BCLK)</td>
<td></td>
<td>40</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>(t_{h(BCLK-DB)})</td>
<td>Data output hold time (in relation to BCLK) (3)</td>
<td></td>
<td>0</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>(t_{h(DB-DB)})</td>
<td>Data output delay time (in relation to WR)</td>
<td></td>
<td>(Note 1)</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>(t_{h(WR-DB)})</td>
<td>Data output hold time (in relation to WR) (3)</td>
<td></td>
<td>(Note 2)</td>
<td>ns</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1. Calculated according to the BCLK frequency as follows:
 \[
 \left(n - 0.5 \right) \times 10^9 \times \frac{1}{f_{BCLK}} - 40[\text{ns}]
 \]
 \(n \) is 1 for 1 wait setting, 2 for 2 waits setting and 3 for 3 waits setting.
 When \(n = 1 \), \(f_{BCLK} \) is 12.5 MHz or less.

2. Calculated according to the BCLK frequency as follows:
 \[
 0.5 \times 10^9 \times \frac{1}{f_{BCLK}} - 10[\text{ns}]
 \]

3. This standard value shows the timing when the output is off, and does not show hold time of data bus.
 Hold time of data bus varies with capacitor volume and pull-up (pull-down) resistance value.
 Hold time of data bus is expressed in
 \[t = -CR \times \ln\left(1 - \frac{V_{OL}}{V_{CC2}}\right) \]
 by a circuit of the right figure.
 For example, when \(V_{OL} = 0.2V_{CC2} \), \(C = 30 \, \text{pF}, \, R = 1 \, \text{k}\Omega \), hold
time of output low level is
 \[t = -30 \, \text{pF} \times 1 \, \text{k}\Omega \times \ln(1 - 0.2V_{CC2}/V_{CC2}) = 6.7 \, \text{ns}. \]
Memory Expansion Mode and Microprocessor Mode
(in 1 to 3 waits setting and when accessing external area)

Read timing

BCLK

CSi

ADi

BHE

ALE

RD

DBi

Write timing

BCLK

CSi

ADi

BHE

ALE

WR, WRL, WRH

DBi

\[t_{\text{cyc}} = \frac{1}{f_{\text{BCLK}}} \]

Measuring conditions
- \(V_{\text{CC1}} = V_{\text{CC2}} = 3V \)
- Input timing voltage: \(V_L = 0.6 \text{ V}, V_H = 2.4 \text{ V} \)
- Output timing voltage: \(V_L = 1.5 \text{ V}, V_H = 1.5 \text{ V} \)
5.3.4.3 In 2 or 3 Waits Setting, and When Accessing External Area and Using Multiplexed Bus

Table 5.59 Memory Expansion Mode and Microprocessor Mode (in 2 or 3 Waits Setting, and When Accessing External Area and Using Multiplexed Bus) (5)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Measuring Condition</th>
<th>Standard</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_{\text{BCLK-AD}}</td>
<td>Address output delay time</td>
<td></td>
<td>50</td>
<td>ns</td>
</tr>
<tr>
<td>t_{\text{BCLK-AD}}</td>
<td>Address output hold time (in relation to BCLK)</td>
<td></td>
<td>0</td>
<td>ns</td>
</tr>
<tr>
<td>t_{\text{RD-AD}}</td>
<td>Address output hold time (in relation to RD)</td>
<td>(Note 1)</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>t_{\text{WR-AD}}</td>
<td>Address output hold time (in relation to WR)</td>
<td>(Note 1)</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>t_{\text{BCLK-CS}}</td>
<td>Chip select output delay time</td>
<td></td>
<td>50</td>
<td>ns</td>
</tr>
<tr>
<td>t_{\text{BCLK-CS}}</td>
<td>Chip select output hold time (in relation to BCLK)</td>
<td></td>
<td>0</td>
<td>ns</td>
</tr>
<tr>
<td>t_{\text{RD-CS}}</td>
<td>Chip select output hold time (in relation to RD)</td>
<td>(Note 1)</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>t_{\text{WR-CS}}</td>
<td>Chip select output hold time (in relation to WR)</td>
<td>(Note 1)</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>t_{\text{BCLK-RD}}</td>
<td>RD signal output delay time</td>
<td></td>
<td>40</td>
<td>ns</td>
</tr>
<tr>
<td>t_{\text{BCLK-RD}}</td>
<td>RD signal output hold time</td>
<td></td>
<td>0</td>
<td>ns</td>
</tr>
<tr>
<td>t_{\text{BCLK-RD}}</td>
<td>WR signal output delay time</td>
<td></td>
<td>40</td>
<td>ns</td>
</tr>
<tr>
<td>t_{\text{BCLK-RD}}</td>
<td>WR signal output hold time</td>
<td></td>
<td>0</td>
<td>ns</td>
</tr>
<tr>
<td>t_{\text{BCLK-DB}}</td>
<td>Data output delay time (in relation to BCLK)</td>
<td></td>
<td>50</td>
<td>ns</td>
</tr>
<tr>
<td>t_{\text{BCLK-DB}}</td>
<td>Data output hold time (in relation to BCLK)</td>
<td></td>
<td>0</td>
<td>ns</td>
</tr>
<tr>
<td>t_{\text{DB-WR}}</td>
<td>Data output delay time (in relation to WR)</td>
<td>(Note 2)</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>t_{\text{WR-DB}}</td>
<td>Data output delay time (in relation to WR)</td>
<td>(Note 1)</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>t_{\text{BCLK-ALE}}</td>
<td>ALE signal output delay time (in relation to BCLK)</td>
<td></td>
<td>25</td>
<td>ns</td>
</tr>
<tr>
<td>t_{\text{BCLK-ALE}}</td>
<td>ALE signal output hold time (in relation to BCLK)</td>
<td></td>
<td>-4</td>
<td>ns</td>
</tr>
<tr>
<td>t_{\text{AD-ALE}}</td>
<td>ALE signal output delay time (in relation to Address)</td>
<td></td>
<td>(Note 3)</td>
<td></td>
</tr>
<tr>
<td>t_{\text{AD-ALE}}</td>
<td>ALE signal output hold time (in relation to Address)</td>
<td></td>
<td>(Note 4)</td>
<td></td>
</tr>
<tr>
<td>t_{\text{AD-RD}}</td>
<td>RD signal output delay from the end of address</td>
<td></td>
<td>0</td>
<td>ns</td>
</tr>
<tr>
<td>t_{\text{AD-WR}}</td>
<td>WR signal output delay from the end of address</td>
<td></td>
<td>0</td>
<td>ns</td>
</tr>
<tr>
<td>t_{\text{RD-AD}}</td>
<td>Address output floating start time</td>
<td></td>
<td>8</td>
<td>ns</td>
</tr>
</tbody>
</table>

Notes:

1. Calculated according to the BCLK frequency as follows: \[
\frac{0.5 \times 10^9}{f_{(BCLK)}} - 10[ns]
\]
2. Calculated according to the BCLK frequency as follows: \[
\frac{(n - 0.5) \times 10^9}{f_{(BCLK)}} - 50[ns]
\]
 \(n\) is 2 for 2 waits setting, 3 for 3 waits setting.
3. Calculated according to the BCLK frequency as follows: \[
\frac{0.5 \times 10^9}{f_{(BCLK)}} - 40[ns]
\]
4. Calculated according to the BCLK frequency as follows: \[
\frac{0.5 \times 10^9}{f_{(BCLK)}} - 15[ns]
\]
5. When using multiplexed bus, set \(f_{(BCLK)}\) 12.5 MHz or less.

\[V_{CC1} = V_{CC2} = 3\, V\]
Memory Expansion Mode and Microprocessor Mode
(in 2 or 3 waits setting, and when accessing external area and using multiplexed bus)

\[V_{CC1} = V_{CC2} = 3V \]

Read timing

- \(t_{d(BCLK-CS)} \): 50ns(max.)
- \(t_{h(RD-CS)} \): 0ns(min.)
- \(t_{h(BCLK-CS)} \): 0ns(min.)
- \(t_{d(AD-ALE)} \): (0.5 \(\times t_{cyc} \) - 15ns(min.))
- \(t_{h(ALE-AD)} \): 0ns(min.)
- \(t_{dz(RD-AD)} \): 8ns(max.)
- \(t_{ac3}(RD-DB) \): {\((n-0.5) \times t_{cyc} \) - 60}ns(max.)
- \(t_{su(DB-RD)} \): 0ns(min.)
- \(t_{h(BCLK-AD)} \): 0ns(min.)
- \(t_{d(BCLK-AD)} \): 50ns(max.)
- \(t_{d(BCLK-ALE)} \): -4ns(min.)
- \(t_{d(BCLK-WR)} \): 0ns(min.)
- \(t_{h(WR-AD)} \): 0ns(min.)
- \(t_{h(WR-CS)} \): 0ns(min.)
- \(t_{d(BCLK-CS)} \): 50ns(max.)
- \(t_{h(RD-CS)} \): (0.5 \(\times t_{cyc} \) - 10)ns(min.)
- \(t_{h(BCLK-CS)} \): (0.5 \(\times t_{cyc} \) - 40ns(min.))
- \(t_{h(WR-CS)} \): (0.5 \(\times t_{cyc} \) - 40ns(min.))
- \(t_{h(WR-DB)} \): 0ns(min.)
- \(t_{h(BCLK-WR)} \): 0ns(min.)

Write timing

- \(t_{d(BCLK-CS)} \): 50ns(max.)
- \(t_{h(RD-CS)} \): 0ns(min.)
- \(t_{h(BCLK-CS)} \): 0ns(min.)
- \(t_{d(AD-ALE)} \): (0.5 \(\times t_{cyc} \) - 15ns(min.))
- \(t_{h(ALE-AD)} \): 0ns(min.)
- \(t_{dz(RD-AD)} \): 8ns(max.)
- \(t_{ac3}(RD-DB) \): {\((n-0.5) \times t_{cyc} \) - 60}ns(max.)
- \(t_{su(DB-RD)} \): 0ns(min.)
- \(t_{h(BCLK-AD)} \): 0ns(min.)
- \(t_{d(BCLK-AD)} \): 50ns(max.)
- \(t_{d(BCLK-ALE)} \): -4ns(min.)
- \(t_{d(BCLK-WR)} \): 0ns(min.)
- \(t_{h(WR-AD)} \): 0ns(min.)
- \(t_{h(WR-CS)} \): 0ns(min.)
- \(t_{d(BCLK-CS)} \): 50ns(max.)
- \(t_{h(RD-CS)} \): (0.5 \(\times t_{cyc} \) - 10)ns(min.)
- \(t_{h(BCLK-CS)} \): (0.5 \(\times t_{cyc} \) - 40ns(min.))
- \(t_{h(WR-CS)} \): (0.5 \(\times t_{cyc} \) - 40ns(min.))
- \(t_{h(WR-DB)} \): 0ns(min.)
- \(t_{h(BCLK-WR)} \): 0ns(min.)

\(n \): 2 (when 2 waits)

\(n \): 3 (when 3 waits)

\(t_{cyc} = \frac{1}{f(BCLK)} \)

Measuring conditions

- \(V_{CC1} = V_{CC2} = 3V \)
- Input timing voltage: \(V_{IL} = 0.6 \) V, \(V_{IH} = 2.4 \) V
- Output timing voltage: \(V_{OL} = 1.5 \) V, \(V_{OH} = 1.5 \) V

Figure 5.33 Timing Diagram
Switching Characteristics

\(V_{CC1} = V_{CC2} = 3 \, V \)

(V\(_{CC1} = V_{CC2} = 3 \, V\), \(V_{SS} = 0 \, V\), at \(T_{opr} = -20^\circ C\) to 85\(^\circ C\)/-40\(^\circ C\) to 85\(^\circ C\) unless otherwise specified)

5.3.4.4 In Wait State Setting \(2\phi + 3\phi, 2\phi + 4\phi, 3\phi + 4\phi, \) and \(4\phi + 5\phi, \) and When Accessing External Area

Table 5.60 Memory Expansion and Microprocessor Modes (in Wait State Setting \(2\phi + 3\phi, 2\phi + 4\phi, 3\phi + 4\phi, \) and \(4\phi + 5\phi, \) and When Accessing External Area)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter Description</th>
<th>Measuring Condition</th>
<th>Standard Condition</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_{(BCLK-AD)})</td>
<td>Address output delay time</td>
<td></td>
<td>Min. 30 ns</td>
<td>ns</td>
</tr>
<tr>
<td>(t_{(BCLK-AD)})</td>
<td>Address output hold time (in relation to BCLK)</td>
<td></td>
<td>0 ns</td>
<td>ns</td>
</tr>
<tr>
<td>(t_{(WR-AD)})</td>
<td>Address output hold time (in relation to WR)</td>
<td></td>
<td>0 ns</td>
<td>ns</td>
</tr>
<tr>
<td>(t_{(BCLK-CS)})</td>
<td>Chip select output delay time</td>
<td>See Figure 5.30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(t_{(BCLK-CS)})</td>
<td>Chip select output hold time (in relation to BCLK)</td>
<td></td>
<td>30 ns</td>
<td>ns</td>
</tr>
<tr>
<td>(t_{(BCLK-ALE)})</td>
<td>ALE signal output delay time</td>
<td></td>
<td>-4 ns</td>
<td>ns</td>
</tr>
<tr>
<td>(t_{(BCLK-ALE)})</td>
<td>ALE signal output hold time</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(t_{(BCLK-RD)})</td>
<td>RD signal output delay time</td>
<td></td>
<td>30 ns</td>
<td>ns</td>
</tr>
<tr>
<td>(t_{(BCLK-RD)})</td>
<td>RD signal output hold time</td>
<td></td>
<td>0 ns</td>
<td>ns</td>
</tr>
<tr>
<td>(t_{(BCLK-WR)})</td>
<td>WR signal output delay time</td>
<td></td>
<td>30 ns</td>
<td>ns</td>
</tr>
<tr>
<td>(t_{(BCLK-WR)})</td>
<td>WR signal output hold time</td>
<td></td>
<td>0 ns</td>
<td>ns</td>
</tr>
<tr>
<td>(t_{(BCLK-DB)})</td>
<td>Data output delay time (in relation to BCLK)</td>
<td></td>
<td>40 ns</td>
<td>ns</td>
</tr>
<tr>
<td>(t_{(BCLK-DB)})</td>
<td>Data output hold time (in relation to BCLK) (Note 2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(t_{(DB-WR)})</td>
<td>Data output delay time (in relation to WR)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(t_{(DB-WR)})</td>
<td>Data output hold time (in relation to WR) (Note 2)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:

1. Calculated according to the BCLK frequency as follows:

\[
\frac{(n - 0.5) \times 10^6}{f_{(BCLK)}} - 40[ns] \quad n = 3 \text{ for } 2\phi + 3\phi, 4 \text{ for } 2\phi + 4\phi, 4 \text{ for } 3\phi + 4\phi, \text{ and } 5 \text{ for } 4\phi + 5\phi.
\]

2. Calculated according to the BCLK frequency as follows:

\[
\frac{0.5 \times 10^6}{f_{(BCLK)}} - 10[ns]
\]

3. This standard value shows the timing when the output is off, and does not show hold time of data bus.

Hold time of data bus varies with capacitor volume and pull-up (pull-down) resistance value.

Hold time of data bus is expressed in

\[
t = -CR \times \ln(1 - V_{OL}/V_{CC2})
\]

by a circuit of the right figure.

For example, when \(V_{OL} = 0.2V_{CC2}\), \(C = 30\, pF\), \(R = 1\, k\Omega\),

hold time of output low level is

\[
t = -30 \, pF \times 1 \, k\Omega \times \ln(1 - 0.2V_{CC2}/V_{CC2}) = 6.7 \, ns.
\]
Memory Expansion Mode, Microprocessor Mode
(in wait state setting $2\phi + 3\phi$, $2\phi + 4\phi$, $3\phi + 4\phi$, and $4\phi + 5\phi$, and when accessing external area)

Read timing

Write timing

$t_{cyc} = \frac{1}{f(BCLK)}$

Measuring conditions
- $V_{CC1} = V_{CC2} = 3\text{V}$
- Input timing voltage: $V_{IL} = 0.6\text{V}$, $V_{IH} = 2.4\text{V}$
- Output timing voltage: $V_{OL} = 1.5\text{V}$, $V_{OH} = 1.5\text{V}$
- n: 3 (when $2\phi + 3\phi$)
 4 (when $2\phi + 4\phi$ or $3\phi + 4\phi$)
 5 (when $4\phi + 5\phi$)

$V_{CC1} = V_{CC2} = 3\text{V}$

Figure 5.34 Timing Diagram
5. Electrical Characteristics

\[V_{CC1} = V_{CC2} = 3 \, \text{V} \]

Switching Characteristics

\(V_{CC1} = V_{CC2} = 3 \, \text{V}, \, V_{SS} = 0 \, \text{V}, \) at \(T_{opr} = -20^\circ \text{C} \) to \(85^\circ \text{C} / -40^\circ \text{C} \) to \(85^\circ \text{C} \) unless otherwise specified

5.3.4.5 In Wait State Setting \(2\phi + 3\phi, 2\phi + 4\phi, 3\phi + 4\phi, \) and \(4\phi + 5\phi, \) and Inserting 1 to 3 Recovery Cycles and Accessing External Area

Table 5.61 Memory Expansion Mode and Microprocessor Mode (in Wait State Setting \(2\phi + 3\phi, 2\phi + 4\phi, 3\phi + 4\phi, \) and \(4\phi + 5\phi, \) and Inserting 1 to 3 Recovery Cycles and Accessing External Area)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Measuring Condition</th>
<th>Standard Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_{(BCLK-AD)})</td>
<td>Address output delay time</td>
<td></td>
<td>Min. Max.</td>
</tr>
<tr>
<td>(t_{(BCLK-AD)})</td>
<td>Address output hold time (in relation to BCLK)</td>
<td></td>
<td>30 ns</td>
</tr>
<tr>
<td>(t_{(RD-AD)})</td>
<td>Address output hold time (in relation to RD)</td>
<td></td>
<td>0 ns</td>
</tr>
<tr>
<td>(t_{(WR-AD)})</td>
<td>Address output hold time (in relation to WR)</td>
<td></td>
<td>(Note 4) ns</td>
</tr>
<tr>
<td>(t_{(BCLK-CS)})</td>
<td>Chip select output delay time</td>
<td></td>
<td>0 ns</td>
</tr>
<tr>
<td>(t_{(BCLK-CS)})</td>
<td>Chip select output hold time (in relation to BCLK)</td>
<td></td>
<td>30 ns</td>
</tr>
<tr>
<td>(t_{(BCLK-ALE)})</td>
<td>ALE signal output delay time</td>
<td></td>
<td>25 ns</td>
</tr>
<tr>
<td>(t_{(BCLK-ALE)})</td>
<td>ALE signal output hold time</td>
<td></td>
<td>-4 ns</td>
</tr>
<tr>
<td>(t_{(BCLK-RD)})</td>
<td>RD signal output delay time</td>
<td></td>
<td>30 ns</td>
</tr>
<tr>
<td>(t_{(BCLK-RD)})</td>
<td>RD signal output hold time</td>
<td></td>
<td>0 ns</td>
</tr>
<tr>
<td>(t_{(BCLK-WR)})</td>
<td>WR signal output delay time</td>
<td></td>
<td>30 ns</td>
</tr>
<tr>
<td>(t_{(BCLK-WR)})</td>
<td>WR signal output hold time</td>
<td></td>
<td>0 ns</td>
</tr>
<tr>
<td>(t_{(BCLK-DB)})</td>
<td>Data output delay time (in relation to BCLK)</td>
<td></td>
<td>40 ns</td>
</tr>
<tr>
<td>(t_{(BCLK-DB)})</td>
<td>Data output hold time (in relation to BCLK)</td>
<td></td>
<td>0 ns</td>
</tr>
<tr>
<td>(t_{(DB-WR)})</td>
<td>Data output delay time (in relation to WR)</td>
<td></td>
<td>(Note 1) ns</td>
</tr>
<tr>
<td>(t_{(WR-DB)})</td>
<td>Data output hold time (in relation to WR)</td>
<td></td>
<td>(Note 2) ns</td>
</tr>
</tbody>
</table>

Notes:

1. Calculated according to the BCLK frequency as follows:

\[\frac{n \times 10^9}{f_{(BCLK)}} \leq 40 \text{ns} \]

\(n \) is 3 for \(2\phi + 3\phi \), 4 for \(2\phi + 4\phi \), 4 for \(3\phi + 4\phi \), and 5 for \(4\phi + 5\phi \).

2. Calculated according to the BCLK frequency as follows:

\[\frac{m \times 10^9}{f_{(BCLK)}} \leq 10 \text{ns} \]

\(m \) is 1 when 1 recovery cycle is inserted, 2 when 2 recovery cycles are inserted, and 3 when 3 recovery cycles are inserted.

3. This standard value shows the timing when the output is off, and does not show hold time of data bus.

 - Hold time of data bus varies with capacitor volume and pull-up (pull-down) resistance value.
 - Hold time of data bus is expressed in
 \[t = -CR \times \ln(1 - V_{OL}/V_{CC2}) \]

 - by a circuit of the right figure.
 - For example, when \(V_{OL} = 0.2V_{CC2} \), \(C = 30 \text{ pF} \), \(R = 1 \text{ k} \Omega \), hold time
 of output low level is
 \[t = -30 \text{ pF} \times 1 \text{ k} \Omega \times \ln(1 - 0.2V_{CC2}/V_{CC2}) \]
 \[= 6.7 \text{ ns} \]

4. Calculated according to the BCLK frequency as follows:

\[\frac{m \times 10^9}{f_{(BCLK)}} + 0 \text{ns} \]

\(m \) is 1 when 1 recovery cycle is inserted, 2 when 2 recovery cycles are inserted, and 3 when 3 recovery cycles are inserted.
Memory Expansion Mode and Microprocessor Mode
(in wait state setting 2 $\phi + 3 \phi$, 2 $\phi + 4 \phi$, 3$\phi + 4 \phi$, and 4 $\phi + 5 \phi$, and
when inserting 1 to 3 recovery cycles inserted and accessing external area)

Read timing

<table>
<thead>
<tr>
<th>Signal</th>
<th>Timing Diagram</th>
</tr>
</thead>
<tbody>
<tr>
<td>BCLK</td>
<td>t_{yc}</td>
</tr>
<tr>
<td>CSi</td>
<td>$t_{BCLK-CS}$, 30ns(max.)</td>
</tr>
<tr>
<td>ADi</td>
<td>$t_{BCLK-AD}$, 30ns(max.)</td>
</tr>
<tr>
<td>BHE</td>
<td>$t_{BCLK-ALE}$, 25ns(max.)</td>
</tr>
<tr>
<td>ALE</td>
<td>$t_{BCLK-AD}$, 4ns(min.)</td>
</tr>
<tr>
<td>RD</td>
<td>$t_{BCLK-RD}$, 30ns(max.)</td>
</tr>
<tr>
<td>DBi</td>
<td>Hi-Z</td>
</tr>
</tbody>
</table>

Write timing

<table>
<thead>
<tr>
<th>Signal</th>
<th>Timing Diagram</th>
</tr>
</thead>
<tbody>
<tr>
<td>BCLK</td>
<td>t_{yc}</td>
</tr>
<tr>
<td>CSi</td>
<td>$t_{BCLK-CS}$, 30ns(max.)</td>
</tr>
<tr>
<td>ADi</td>
<td>$t_{BCLK-AD}$, 30ns(max.)</td>
</tr>
<tr>
<td>BHE</td>
<td>$t_{BCLK-ALE}$, 25ns(max.)</td>
</tr>
<tr>
<td>ALE</td>
<td>$t_{BCLK-AD}$, 4ns(min.)</td>
</tr>
<tr>
<td>WR, WRH</td>
<td>$t_{BCLK-WR}$, 30ns(max.)</td>
</tr>
<tr>
<td>DBi</td>
<td>Hi-Z</td>
</tr>
</tbody>
</table>

$t_{yc} = \frac{1}{f(BCLK)}$

Measuring conditions
- $V_{CC1} = V_{CC2} = 3V$
- Input timing voltage: $V_{IL} = 0.6 \text{ V}, V_{IH} = 2.4 \text{ V}$
- Output timing voltage: $V_{OL} = 1.5 \text{ V}, V_{OH} = 1.5 \text{ V}$

$V_{CC1} = V_{CC2} = 3V$

Figure 5.35 Timing Diagram
5.4 **Electrical Characteristics (V\(_{CC1} = V_{CC2} = 1.8\) V)**

5.4.1 Electrical Characteristics

\[V_{CC1} = V_{CC2} = 1.8 \) V \]

Table 5.62 Electrical Characteristics (1)\(^{(1)}\)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Measuring Condition</th>
<th>Standard</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Min.</td>
<td>Typ.</td>
</tr>
<tr>
<td>V(_{OH})</td>
<td>High output voltage</td>
<td>P6({0}) to P6({7}), P7({2}) to P7({7}), P8({0}) to P8({4}), P8({6}) to P8({7}), P9({0}) to P9({7}), P10({0}) to P10({7})</td>
<td>I(_{OH} = -1) mA</td>
<td>V(_{CC1} = 0.5)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P0({0}) to P0({7}), P1({0}) to P1({7}), P2({0}) to P2({7}), P3({0}) to P3({7}), P4({0}) to P4({7}), P5({0}) to P5({7})</td>
<td>I(_{OH} = -1) mA</td>
<td>V(_{CC2} = 0.5)</td>
</tr>
<tr>
<td>V(_{OH})</td>
<td>High output voltage XOUT</td>
<td>HIGHPOWER</td>
<td>I(_{OH} = -0.1) mA</td>
<td>V(_{CC1} = 0.5)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LOWPOWER</td>
<td>I(_{OH} = 50) (\mu) A</td>
<td>V(_{CC1} = 0.5)</td>
</tr>
<tr>
<td></td>
<td>XOUT</td>
<td>X(_{OUT})</td>
<td>With no load applied</td>
<td>1.5</td>
</tr>
<tr>
<td>V(_{OL})</td>
<td>Low output voltage P6({0}) to P6({7}), P7({0}) to P7({7}), P8({0}) to P8({7}), P9({0}) to P9({7}), P10({0}) to P10({7})</td>
<td>I(_{OL} = 1) mA</td>
<td>0.5</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P0({0}) to P0({7}), P1({0}) to P1({7}), P2({0}) to P2({7}), P3({0}) to P3({7}), P4({0}) to P4({7}), P5({0}) to P5({7})</td>
<td>I(_{OL} = 1) mA</td>
<td>0.5</td>
</tr>
<tr>
<td>V(_{OL})</td>
<td>Low output voltage XOUT</td>
<td>HIGHPOWER</td>
<td>I(_{OL} = 0.1) mA</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LOWPOWER</td>
<td>I(_{OL} = 50) (\mu) A</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td>XOUT</td>
<td>X(_{OUT})</td>
<td>With no load applied</td>
<td>0</td>
</tr>
<tr>
<td>V({T+}) - V({T-})</td>
<td>Hysteresis</td>
<td>HOLD, RDY, TA0IN to TA4IN, TB0IN to TB5IN, INT0 to INT7, NMI, ADTRG, CTS0 to CTS2, CTS5 to CTS7, SCL0 to SCL2, SCL5 to SCL7, SDA0 to SDA2, SDA5 to SDA7, CLK0 to CLK7, TA0OUT to TA4OUT, KI0 to KI7, RX0 to RX2, RXD5 to RXD7, IN3, IN4, SD, PMC0, PMC1, SCLMM, SDAMM, CEC</td>
<td>V({CC1} = V{CC2} = 1.8) V</td>
<td>0.02</td>
</tr>
<tr>
<td>V({T+}) - V({T-})</td>
<td>Hysteresis</td>
<td>RESET</td>
<td>V({CC1} = V{CC2} = 1.8) V</td>
<td>0.05</td>
</tr>
<tr>
<td>I(_{IH})</td>
<td>High input current</td>
<td>P0({0}) to P0({7}), P1({0}) to P1({7}), P2({0}) to P2({7}), P3({0}) to P3({7}), P4({0}) to P4({7}), P5({0}) to P5({7}), P6({0}) to P6({7}), P7({0}) to P7({7}), P8({0}) to P8({7}), P9({0}) to P9({7}), P10({0}) to P10({7}) XIN, RESET, CNVSS, BYTE</td>
<td>(V_I = 1.8) V</td>
<td>2.0</td>
</tr>
</tbody>
</table>

Note:

1. When \(V_{CC1} = V_{CC2}\), refer to 5 V, 3 V, or 1.8 V standard depending on the voltage.
Table 5.63 Electrical Characteristics (2) (1)

1.8 V ≤ V_{CC1} = V_{CC2} < 2.7 V, V_{SS} = 0 V at T_{op} = −20 to 85°C/−40 to 85°C, f_{clk} = 5 MHz unless otherwise specified.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Measuring Condition</th>
<th>Standard (Unit)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I<sub>IL</sub></td>
<td>Low input current</td>
<td>P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0 to P7_7, P8_0 to P8_7, P9_0 to P9_7, P10_0 to P10_7</td>
<td>VI = 0 V</td>
</tr>
<tr>
<td>R<sub>PULLUP</sub></td>
<td>Pull-up resistance</td>
<td>P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0 to P7_7, P8_0 to P8_7, P9_0 to P9_7, P10_0 to P10_7</td>
<td>VI = 0 V</td>
</tr>
<tr>
<td>R<sub>XIN</sub></td>
<td>Feedback resistance</td>
<td>XIN</td>
<td>0.8 MΩ</td>
</tr>
<tr>
<td>R<sub>XCIN</sub></td>
<td>Feedback resistance</td>
<td>XCIN</td>
<td>8 MΩ</td>
</tr>
<tr>
<td>V<sub>RAM</sub></td>
<td>RAM retention voltage</td>
<td></td>
<td>1.8 V</td>
</tr>
</tbody>
</table>

Note:

1. When V_{CC1} ≠ V_{CC2}, refer to 5 V, 3 V, or 1.8 V standard depending on the voltage.
Table 5.64 Electrical Characteristics (3)

1.8 V ≤ VCC1 = VCC2 < 2.7 V, VSS = 0 V at Topr = –20°C to 85°C, f(BCLK) = 5 MHz unless otherwise specified.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Measuring Condition</th>
<th>Standard Unit</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICC</td>
<td>Power supply current</td>
<td>High-speed mode</td>
<td>f(BCLK) = 5 MHz (no division)</td>
<td>2.6</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>XIN = 5 MHz (square wave),</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>125 kHz on-chip oscillator stop</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CM15 = 1 (drive capacity High)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>A/D converter stop</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>f(BCLK) = 5 MHz (no division),</td>
<td>3.3</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>XIN = 5 MHz (square wave)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>125 kHz on-chip oscillator stop</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CM15 = 1 (drive capacity High)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>A/D converter operating</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ICC</td>
<td>Low-speed mode</td>
<td>f(BCLK) = 5 MHz</td>
<td>2.6</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>XIN = 5 MHz (square wave)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>125 kHz on-chip oscillator stop</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CM15 = 0 (drive capacity Low)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>A/D converter stop</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ICC</td>
<td>Main clock stop</td>
<td>f(BCLK) = 5 MHz</td>
<td>2.6</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>XIN = 5 MHz (square wave)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>125 kHz on-chip oscillator stop</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CM15 = 1 (drive capacity High)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>PCLKSTP1 = FF (peripheral clock stop)</td>
<td>2.6</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ICC</td>
<td>Low-power mode</td>
<td>f(BCLK) = 5 MHz</td>
<td>2.2</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>XIN = 5 MHz (square wave)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>125 kHz on-chip oscillator stop</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CM15 = 0 (drive capacity Low)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>PCLKSTP1 = FF (peripheral clock stop)</td>
<td>2.2</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ICC</td>
<td>40 MHz on-chip oscillator mode</td>
<td>Main clock stop</td>
<td>2.8</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>40 MHz on-chip oscillator on, divide-by-8 (f(BCLK) = 5 MHz)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>125 kHz on-chip oscillator stop</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ICC</td>
<td>125 kHz on-chip oscillator mode</td>
<td>Main clock stop</td>
<td>450.0</td>
<td>μA</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>40 MHz on-chip oscillator stop</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>125 kHz on-chip oscillator stop, no division</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>FMR22 = 1 (slow read mode)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ICC</td>
<td>Low-power mode</td>
<td>f(BCLK) = 32 MHz</td>
<td>80.0</td>
<td>μA</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>FMR 22 = FMR23 = 1 (in low-current consumption read mode)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>on flash memory (1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ICC</td>
<td>Wait mode</td>
<td>f(BCLK) = 32 kHz</td>
<td>5.3</td>
<td>μA</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Main clock stop</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>40 MHz on-chip oscillator stop</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>125 kHz on-chip oscillator on</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>PM25 = 1 (peripheral function clock fC operating)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Topr = 25°C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ICC</td>
<td>Stop mode</td>
<td>f(BCLK) = 32 MHz</td>
<td>5.0</td>
<td>μA</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Main clock stop</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>40 MHz on-chip oscillator stop</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>125 kHz on-chip oscillator stop</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>PM25 = 0 (peripheral function clock fC stop)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Topr = 25°C</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1. This indicates the memory in which the program to be executed exists
2. A/D conversion is executed in repeat mode.
5.4.2 Timing Requirements (Peripheral Functions and Others)

\(V_{CC1} = V_{CC2} = 1.8 \, \text{V} \)

(V\(_{CC1} = V_{CC2} = 1.8 \, \text{V}, V_{SS} = 0 \, \text{V}, \text{at } T_{opr} = -20^\circ \text{C} \text{ to } 85^\circ \text{C}, -40^\circ \text{C} \text{ to } 85^\circ \text{C} \) unless otherwise specified)

5.4.2.1 Reset Input (RESET Input)

Table 5.65 Reset Input (RESET Input)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Standard</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_{w(RSTL)})</td>
<td>RESET input low pulse width</td>
<td>10</td>
<td>µs</td>
</tr>
</tbody>
</table>

![Figure 5.36 Reset Input (RESET Input)](image)

5.4.2.2 External Clock Input

Table 5.66 External Clock Input (XIN Input) (1)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Standard</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_c)</td>
<td>External clock input cycle time</td>
<td>100</td>
<td>ns</td>
</tr>
<tr>
<td>(t_{w(H)})</td>
<td>External clock input high pulse width</td>
<td>40</td>
<td>ns</td>
</tr>
<tr>
<td>(t_{w(L)})</td>
<td>External clock input low pulse width</td>
<td>40</td>
<td>ns</td>
</tr>
<tr>
<td>(t_r)</td>
<td>External clock rise time</td>
<td>9</td>
<td>ns</td>
</tr>
<tr>
<td>(t_f)</td>
<td>External clock fall time</td>
<td>9</td>
<td>ns</td>
</tr>
</tbody>
</table>

Note:
1. The condition is 1.8 V ≤ V\(_{CC1} = V_{CC2} < 2.7 \, \text{V} \).

![Figure 5.37 External Clock Input (XIN Input)](image)
Timing Requirements
($V_{CC1} = V_{CC2} = 1.8 \text{ V}, V_{SS} = 0 \text{ V}, \text{ at } T_{opr} = -20^\circ\text{C to } 85^\circ\text{C}, -40^\circ\text{C to } 85^\circ\text{C unless otherwise specified}$)

5.4.2.3 Timer A Input

Table 5.67 Timer A Input (Counter Input in Event Counter Mode)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter Description</th>
<th>Standard Min.</th>
<th>Standard Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>$t_c(TA)$</td>
<td>TAIN input cycle time</td>
<td>500</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>$t_w(TAH)$</td>
<td>TAIN input high pulse width</td>
<td>200</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>$t_w(TAL)$</td>
<td>TAIN input low pulse width</td>
<td>200</td>
<td></td>
<td>ns</td>
</tr>
</tbody>
</table>

Table 5.68 Timer A Input (Gating Input in Timer Mode)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter Description</th>
<th>Standard Min.</th>
<th>Standard Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>$t_c(TA)$</td>
<td>TAIN input cycle time</td>
<td>1000</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>$t_w(TAH)$</td>
<td>TAIN input high pulse width</td>
<td>500</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>$t_w(TAL)$</td>
<td>TAIN input low pulse width</td>
<td>500</td>
<td></td>
<td>ns</td>
</tr>
</tbody>
</table>

Table 5.69 Timer A Input (External Trigger Input in One-Shot Timer Mode)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter Description</th>
<th>Standard Min.</th>
<th>Standard Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>$t_c(TA)$</td>
<td>TAIN input cycle time</td>
<td>800</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>$t_w(TAH)$</td>
<td>TAIN input high pulse width</td>
<td>400</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>$t_w(TAL)$</td>
<td>TAIN input low pulse width</td>
<td>400</td>
<td></td>
<td>ns</td>
</tr>
</tbody>
</table>

Table 5.70 Timer A Input (External Trigger Input in Pulse Width Modulation Mode and Programmable Output Mode)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter Description</th>
<th>Standard Min.</th>
<th>Standard Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>$t_w(TAH)$</td>
<td>TAIN input high pulse width</td>
<td>400</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>$t_w(TAL)$</td>
<td>TAIN input low pulse width</td>
<td>400</td>
<td></td>
<td>ns</td>
</tr>
</tbody>
</table>

![Figure 5.38 Timer A Input](image)
Timing Requirements
($V_{CC1} = V_{CC2} = 1.8 \, V$, $V_{SS} = 0 \, V$, at $T_{opr} = -20^\circ C$ to $85^\circ C$/-40$^\circ C$ to $85^\circ C$ unless otherwise specified)

Table 5.71 Timer A Input (Two-Phase Pulse Input in Event Counter Mode)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Standard</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>$t_c(TA)$</td>
<td>TAIN input cycle time</td>
<td>3</td>
<td>μs</td>
</tr>
<tr>
<td>$t_{su}(TAIN-TAOUT)$</td>
<td>TAIN input setup time</td>
<td>800</td>
<td>ns</td>
</tr>
<tr>
<td>$t_{su}(TAOUT-TAIN)$</td>
<td>TAIN input setup time</td>
<td>800</td>
<td>ns</td>
</tr>
</tbody>
</table>

Figure 5.39 Timer A Input (Two-Phase Pulse Input in Event Counter Mode)
5. Electrical Characteristics

\[V_{CC1} = V_{CC2} = 1.8 \, V \]

Timing Requirements

\(V_{CC1} = V_{CC2} = 1.8 \, V, \, V_{SS} = 0 \, V, \, \text{at } T_{opr} = -20^\circ\text{C} \text{ to } 85^\circ\text{C} \text{/-40}^\circ\text{C} \text{ to } 85^\circ\text{C} \text{ unless otherwise specified} \)

5.4.2.4 Timer B Input

Table 5.72 Timer B Input (Counter Input in Event Counter Mode)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Standard Unit</th>
<th>Min.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tc(TB)</td>
<td>TBiIN input cycle time (counted on one edge)</td>
<td>ns</td>
<td>300</td>
<td></td>
</tr>
<tr>
<td>Tw(TBH)</td>
<td>TBiIN input high pulse width (counted on one edge)</td>
<td>ns</td>
<td>120</td>
<td></td>
</tr>
<tr>
<td>Tw(TBL)</td>
<td>TBiIN input low pulse width (counted on one edge)</td>
<td>ns</td>
<td>120</td>
<td></td>
</tr>
<tr>
<td>Tw(TB)</td>
<td>TBiIN input cycle time (counted on both edges)</td>
<td>ns</td>
<td>600</td>
<td></td>
</tr>
<tr>
<td>Tw(TBH)</td>
<td>TBiIN input high pulse width (counted on both edges)</td>
<td>ns</td>
<td>240</td>
<td></td>
</tr>
<tr>
<td>Tw(TBL)</td>
<td>TBiIN input low pulse width (counted on both edges)</td>
<td>ns</td>
<td>240</td>
<td></td>
</tr>
</tbody>
</table>

Table 5.73 Timer B Input (Pulse Period Measurement Mode)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Standard Unit</th>
<th>Min.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tc(TB)</td>
<td>TBiIN input cycle time</td>
<td>ns</td>
<td>1000</td>
<td></td>
</tr>
<tr>
<td>Tw(TBH)</td>
<td>TBiIN input high pulse width</td>
<td>ns</td>
<td>500</td>
<td></td>
</tr>
<tr>
<td>Tw(TBL)</td>
<td>TBiIN input low pulse width</td>
<td>ns</td>
<td>500</td>
<td></td>
</tr>
</tbody>
</table>

Table 5.74 Timer B Input (Pulse Width Measurement Mode)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Standard Unit</th>
<th>Min.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tc(TB)</td>
<td>TBiIN input cycle time</td>
<td>ns</td>
<td>1000</td>
<td></td>
</tr>
<tr>
<td>Tw(TBH)</td>
<td>TBiIN input high pulse width</td>
<td>ns</td>
<td>500</td>
<td></td>
</tr>
<tr>
<td>Tw(TBL)</td>
<td>TBiIN input low pulse width</td>
<td>ns</td>
<td>500</td>
<td></td>
</tr>
</tbody>
</table>

Figure 5.40 Timer B Input
Timing Requirements

\[V_{CC1} = V_{CC2} = 1.8 \, V \]

\(V_{CC1} = V_{CC2} = 1.8 \, V, V_{SS} = 0 \, V, \) at \(T_{opr} = -20^\circ C \) to \(85^\circ C / -40^\circ C \) to \(85^\circ C \) unless otherwise specified

5.4.2.5 Serial Interface

Table 5.75 Serial Interface

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Standard</th>
<th>Unit</th>
<th>Min.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_{c(CK)})</td>
<td>CLK input cycle time</td>
<td></td>
<td>ns</td>
<td>800</td>
<td></td>
</tr>
<tr>
<td>(t_{w(CKH)})</td>
<td>CLK input high pulse width</td>
<td></td>
<td>ns</td>
<td>400</td>
<td></td>
</tr>
<tr>
<td>(t_{w(CKL)})</td>
<td>CLK input low pulse width</td>
<td></td>
<td>ns</td>
<td>400</td>
<td></td>
</tr>
<tr>
<td>(t_{w(C-Q)})</td>
<td>TXDI output delay time</td>
<td></td>
<td>ns</td>
<td></td>
<td>240</td>
</tr>
<tr>
<td>(t_{w(C-O)})</td>
<td>TXDI hold time</td>
<td></td>
<td>ns</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>(t_{w(D-C)})</td>
<td>RXDI input setup time</td>
<td></td>
<td>ns</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>(t_{w(C-D)})</td>
<td>RXDI input hold time</td>
<td></td>
<td>ns</td>
<td>90</td>
<td></td>
</tr>
</tbody>
</table>

Figure 5.41 Serial Interface

5.4.2.6 External Interrupt \(INT_i \) Input

Table 5.76 External Interrupt \(INT_i \) Input

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Standard</th>
<th>Unit</th>
<th>Min.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_{w(INH)})</td>
<td>INT input high pulse width</td>
<td></td>
<td>ns</td>
<td>1000</td>
<td></td>
</tr>
<tr>
<td>(t_{w(INL)})</td>
<td>INT input low pulse width</td>
<td></td>
<td>ns</td>
<td>1000</td>
<td></td>
</tr>
<tr>
<td>(t_r(INF))</td>
<td>INT input rising time</td>
<td></td>
<td>(\mu s)</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>(t_f(INF))</td>
<td>INT input falling time</td>
<td></td>
<td>(\mu s)</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

Figure 5.42 External Interrupt \(INT_i \) Input
Timing Requirements

(V_{CC1} = V_{CC2} = 1.8 \text{ V}, V_{SS} = 0 \text{ V}, at T_{opr} = -20^\circ\text{C} to 85^\circ\text{C}/-40^\circ\text{C} to 85^\circ\text{C} unless otherwise specified)

5.4.2.7 Multi-master I2C-bus

Table 5.77 Multi-master I2C-bus

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Standard Clock Mode</th>
<th>Fast-mode</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Min.</td>
<td>Max.</td>
<td>Min.</td>
</tr>
<tr>
<td>(t_{BUF})</td>
<td>Bus free time</td>
<td>4.7</td>
<td>1.3</td>
<td></td>
</tr>
<tr>
<td>(t_{HD;STA})</td>
<td>Hold time in start condition</td>
<td>4.0</td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td>(t_{LOW})</td>
<td>Hold time in SCL clock 0 status</td>
<td>4.7</td>
<td>1.3</td>
<td></td>
</tr>
<tr>
<td>(t_{R})</td>
<td>SCL, SDA signals’ rising time</td>
<td>1000</td>
<td>300</td>
<td>20 + 0.1 \text{ Cb}</td>
</tr>
<tr>
<td>(t_{HD;DAT})</td>
<td>Data hold time</td>
<td>0</td>
<td>0.9</td>
<td></td>
</tr>
<tr>
<td>(t_{HIGH})</td>
<td>Hold time in SCL clock 1 status</td>
<td>4.0</td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td>(f_{F})</td>
<td>SCL, SDA signals’ falling time</td>
<td>300</td>
<td>300</td>
<td>20 + 0.1 \text{ Cb}</td>
</tr>
<tr>
<td>(t_{su;DAT})</td>
<td>Data setup time</td>
<td>250</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>(t_{su;STA})</td>
<td>Setup time in restart condition</td>
<td>4.7</td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td>(t_{su;STO})</td>
<td>Stop condition setup time</td>
<td>4.0</td>
<td>0.6</td>
<td></td>
</tr>
</tbody>
</table>

Figure 5.43 Multi-master I2C-bus
Appendix 1. Package Dimensions

The information on the latest package dimensions or packaging may be obtained from “Packages” on the Renesas Electronics website.

Package Dimensions

<table>
<thead>
<tr>
<th>Package Code</th>
<th>Previous Code</th>
<th>MASS[Typ.]</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-PQFP100-14x20-0.65</td>
<td>100P6F-A</td>
<td>1.8g</td>
</tr>
</tbody>
</table>

JEITA Package Code

<table>
<thead>
<tr>
<th>Dimension in Millimeters</th>
<th>Min</th>
<th>Nom</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>19.8</td>
<td>20.0</td>
<td>20.2</td>
</tr>
<tr>
<td>E</td>
<td>13.8</td>
<td>14.0</td>
<td>14.2</td>
</tr>
<tr>
<td>A0</td>
<td>2.8</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>H0</td>
<td>22.5</td>
<td>22.8</td>
<td>23.1</td>
</tr>
<tr>
<td>H1</td>
<td>16.5</td>
<td>16.8</td>
<td>17.1</td>
</tr>
<tr>
<td>A</td>
<td>3.05</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>A1</td>
<td>1.1</td>
<td>1.2</td>
<td>—</td>
</tr>
<tr>
<td>b0</td>
<td>0.25</td>
<td>0.3</td>
<td>0.4</td>
</tr>
<tr>
<td>c0</td>
<td>0.13</td>
<td>0.15</td>
<td>0.2</td>
</tr>
<tr>
<td>x</td>
<td>1.0</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>y</td>
<td>0.13</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Z0</td>
<td>0.575</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>ZE</td>
<td>0.825</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

NOTE:
1. DIMENSIONS "*1" AND "*2" DO NOT INCLUDE MOLD FLASH.
2. DIMENSION "*3" DOES NOT INCLUDE TRIM OFFSET.

JEITA Package Code

<table>
<thead>
<tr>
<th>Dimension in Millimeters</th>
<th>Min</th>
<th>Nom</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>11.65</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>E</td>
<td>11.65</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>A0</td>
<td>1.0</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>H0</td>
<td>15.8</td>
<td>16.0</td>
<td>16.2</td>
</tr>
<tr>
<td>H1</td>
<td>15.8</td>
<td>16.0</td>
<td>16.2</td>
</tr>
<tr>
<td>A</td>
<td>1.7</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>A1</td>
<td>0.65</td>
<td>0.7</td>
<td>0.75</td>
</tr>
<tr>
<td>b0</td>
<td>0.15</td>
<td>0.2</td>
<td>0.25</td>
</tr>
<tr>
<td>c0</td>
<td>0.08</td>
<td>0.145</td>
<td>0.2</td>
</tr>
<tr>
<td>x</td>
<td>0.1</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>y</td>
<td>0.05</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Z0</td>
<td>0.5</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>ZE</td>
<td>1.0</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

NOTE:
1. DIMENSIONS "*1" AND "*2" DO NOT INCLUDE MOLD FLASH.
2. DIMENSION "*3" DOES NOT INCLUDE TRIM OFFSET.
Appendix 1. Package Dimensions

<table>
<thead>
<tr>
<th>JEITA Package Code</th>
<th>RENESAS Code</th>
<th>Previous Code</th>
<th>MASS [typ.]</th>
</tr>
</thead>
<tbody>
<tr>
<td>STPLGA100-3.5x3.5-0.5</td>
<td>PTGL0100XA-A</td>
<td>100F0M</td>
<td>0.1g</td>
</tr>
</tbody>
</table>

Dimension Table

<table>
<thead>
<tr>
<th>Dimension in Millimeters</th>
<th>Reference Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.29</td>
<td>U</td>
</tr>
<tr>
<td>0.34</td>
<td>E</td>
</tr>
<tr>
<td>0.39</td>
<td>V</td>
</tr>
<tr>
<td>0.21</td>
<td>W</td>
</tr>
<tr>
<td>0.5</td>
<td>A</td>
</tr>
<tr>
<td>0.5</td>
<td>B</td>
</tr>
<tr>
<td>0.25</td>
<td>C</td>
</tr>
<tr>
<td>0.29</td>
<td>D</td>
</tr>
<tr>
<td>0.29</td>
<td>D</td>
</tr>
<tr>
<td>0.34</td>
<td>X</td>
</tr>
<tr>
<td>0.39</td>
<td>Y</td>
</tr>
<tr>
<td>1.05</td>
<td>Z</td>
</tr>
<tr>
<td>0.3</td>
<td>Z</td>
</tr>
<tr>
<td>0.5</td>
<td>E</td>
</tr>
</tbody>
</table>

Notes:

1. Dimensions "<" AND ">" DO NOT INCLUDE MOLD FLASH.
2. Dimensions "=" DO NOT INCLUDE TRIM OFFSET.

<table>
<thead>
<tr>
<th>Dimension in Millimeters</th>
<th>Reference Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.0</td>
<td>U</td>
</tr>
<tr>
<td>12.0</td>
<td>E</td>
</tr>
<tr>
<td>12.0</td>
<td>V</td>
</tr>
<tr>
<td>12.0</td>
<td>A</td>
</tr>
<tr>
<td>12.0</td>
<td>B</td>
</tr>
<tr>
<td>12.0</td>
<td>C</td>
</tr>
<tr>
<td>12.0</td>
<td>D</td>
</tr>
<tr>
<td>1.1</td>
<td>X</td>
</tr>
<tr>
<td>1.3</td>
<td>Y</td>
</tr>
<tr>
<td>0.2</td>
<td>Z</td>
</tr>
<tr>
<td>0.3</td>
<td>E</td>
</tr>
<tr>
<td>0.5</td>
<td>L</td>
</tr>
<tr>
<td>0.7</td>
<td>L</td>
</tr>
<tr>
<td>1.0</td>
<td>E</td>
</tr>
</tbody>
</table>
REVISION HISTORY

M16C/63 Group Datasheet

<table>
<thead>
<tr>
<th>Rev.</th>
<th>Date</th>
<th>Page</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.30</td>
<td>Jul 15, 2009</td>
<td>-</td>
<td>First Edition issued.</td>
</tr>
<tr>
<td>0.40</td>
<td>Aug 18, 2009</td>
<td>3</td>
<td>Table 1.2 “Specifications for the 100-Pin Package (2/2)” partially modified</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>Table 1.5 “Product List” partially modified</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7</td>
<td>Figure 1.1 “Part No., with Memory Size and Package” partially modified</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12</td>
<td>Figure 1.7 “Pin Assignment for the 100-Pin Package” added</td>
</tr>
<tr>
<td></td>
<td></td>
<td>13</td>
<td>Table 1.8 “Pin Names for the 100-Pin Package (1/2)” partially modified</td>
</tr>
<tr>
<td></td>
<td></td>
<td>14</td>
<td>Table 1.7 “Pin Names for the 100-Pin Package (2/2)” partially modified</td>
</tr>
<tr>
<td></td>
<td></td>
<td>107</td>
<td>Table 5.65 “External Clock Input (XIN Input)” partially modified</td>
</tr>
<tr>
<td></td>
<td></td>
<td>112</td>
<td>Appendix 1. “Package Dimensions” PTLG0100KA-A added</td>
</tr>
<tr>
<td>0.41</td>
<td>Aug 25, 2009</td>
<td>6</td>
<td>Table 1.5 “Product List” Part No. partially modified</td>
</tr>
<tr>
<td>1.00</td>
<td>Sep 15, 2009</td>
<td>6</td>
<td>Table 1.5 “Product List” Part No. partially modified</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7</td>
<td>Figure 1.3 “Marking Diagram (Top View) (2/2)” added</td>
</tr>
<tr>
<td>2.00</td>
<td>Feb 07, 2011</td>
<td>52</td>
<td>Table 5.6 “A/D Conversion Characteristics (1/2)” note 3 added</td>
</tr>
</tbody>
</table>

Overview

- **001Ah Voltage Detector Operation Enable Register**: Changed reset value from “000X 0000b”.
- **Overall 002Ah Voltage Monitor 0 Control Register**: Changed reset value from “1100 XX10b”.
- **Overall 002Bh Voltage Monitor 1 Control Register**: Changed reset value from “1000 1X10b”.
- **Overall 032Ah Increment/Decrement Flag**: Changed name from Up/Down Flag.
- **Overall 03DCh D/A Control Register**: Changed reset value from “XXXX XX00b”.
- **Overall D08Ah to D08Bh PMC0 Counter Value Register**: Deleted.
- **Overall D09Eh to D09Fh PMC1 Counter Value Register**: Deleted.

Address Space

- **3, 5 Table 1.2 and Table 1.4 Specifications for the 100/80-Pin Package**: Deleted note 1.
- **6 Table 1.5 Product List**: Changed the development status.
- **18 Table 1.10 Pin Functions for the 100-Pin Package (1/3)**: Changed the descriptions of the HOLD pin.

Special Function Registers (SFRs)

- **29 Table 4.1 SFR Information (1)**:
 - Deleted “the VCR1 register, the VCR2 register” from note 2.
 - Deleted notes 5 to 6 and added note 5.
- **30 Table 4.2 SFR Information (2)**: Deleted notes 2 to 7 and added note 2.
- **47 4.2.1 Register Settings**: Added the description regarding read-modify-write instructions.
- **48 Table 4.20 Read-Modify-Write Instructions**: Added.

Electrical Characteristics

- **49 Table 5.1 Absolute Maximum Ratings**: Divide a row for T_{op} (Flash program erase) into Program area and Data area.
- **50 Table 5.2 Recommended Operating Conditions (1/4)**: Added rows for the CEC value to V_{CC1}, V_{IH} and V_{IL}.
- **56 Table 5.9 CPU Clock When Operating Flash Memory (f_{BCLK})**: Added note 3.
- **56 Table 5.10 Flash Memory (Program ROM 1, 2)**: Added a condition to the Read voltage row.
- **59 Table 5.15 Power-On Reset Circuit**: Changed the maximum value for V_{por} from 0.1.
- **59 Table 5.15 Power-On Reset Circuit**: Changed the last line in note 1.
- **59 Table 5.15 Power-On Reset Circuit Electrical Characteristics**: Deleted note 2.
- **61 Table 5.17 40 MHz On-Chip Oscillator Electrical Characteristics**: Deleted note 1.
- **63 Table 5.20 Electrical Characteristics (2)**: Added “ZP, IDU, IDV, IDW” to the $V_{IH} - V_{IL}$ row.
- **70, 91, 113 5.2.2.7, 5.3.2.7, and 5.4.2.7 Multi-master PC-bus**: Added.
- **71 Table 5.35 Memory Expansion Mode and Microprocessor Mode**: Changed RDY input setup time from 30.
Table 5.35 to Table 5.40 and Table 5.56 to Table 5.61 Memory Expansion Mode and Microprocessor Mode:
Deleted the following:
• HOLD input setup time
• HOLD input hold time
• HLDA output delay time

Figure 5.14 and Figure 5.29 Timing Diagram:
Deleted lower figure (Common to wait state and no wait state settings).

Figure 5.20 and Figure 5.35 Timing Diagram: Changed the width of th(RD-AD).

Table 5.41 Electrical Characteristics (1):
• Added rows for the CEC value to VOL, VT+ - VT-, and Leakage current in powered-off state.
• Added “ZP, IDU, IDV, IDW” to the VT+ - VT- row.

Table 5.42 Electrical Characteristics (2): Changed “VCC1 = 5.0 V” to “VCC1 = 3.0 V” in the During flash memory program and During flash memory erase rows.

Table 5.56 Memory Expansion Mode and Microprocessor Mode:
Changed RDY input setup time from 40.

Table 5.62 Electrical Characteristics (1):
• Changed the Measuring Condition over the table.
• Added “ZP, IDU, IDV, IDW” to the Parameter column and the value to the Measuring Condition in the VT+ - VT- row.
• Changed the Measuring Condition in the Ih row.

Table 5.63 Electrical Characteristics (2) and Table 5.64 Electrical Characteristics (3):
Changed the Measuring Condition over the table.

Table 5.66 External Clock Input (XIN Input): Changed the condition in note 1.

Overview

Table 1.1 Specifications for the 100-Pin Package (1/2): Added the condition for 100.0 ns and changed the condition for 200 ns in the Minimum instruction execution time in the Description column of the CPU.

Table 1.2 Specifications for the 100-Pin Package (2/2): Added “10 MHz/VCC1 = 2.1 to 5.5 V, VCC2 = 2.1 V to VCC1” to the Description column of the Operation Frequency/Supply Voltage.

Table 1.3 Specifications for the 80-Pin Package (1/2): Added the condition for 100.0 ns and changed the condition for 200 ns in the Minimum instruction execution time in the Description column of the CPU.

Table 1.4 Specifications for the 80-Pin Package (2/2): Added “10 MHz/VCC1 = 2.1 to 5.5 V” to the Description column of the Operation Frequency/Supply Voltage.

Electrical Characteristics

Table 5.4 Recommended Operating Conditions (3/4):
• Changed the Parameter “2.7 V ≤ VCC1 < 5.5 V” to “2.7 V ≤ VCC1 < 5.5 V, 1 MHz ≤ f(BCLK) ≤ 20 MHz” in f(BCLK).
• Added the line for “2.1 V ≤ VCC1 < 2.7 V, 1 MHz ≤ f(XIN) ≤ 10 MHz” in f(BCLK).
• Changed the Parameter “1.8 V ≤ VCC1 < 2.7 V” to “1.8 V ≤ VCC1 < 2.1 V, 1 MHz ≤ f(XIN) ≤ 10 MHz” in f(BCLK).

Figure 5.1 Relation between f(BCLK) and VCC1: Modified the range of 2.1 V ≤ VCC1 < 2.7 V.
General Precautions in the Handling of MPU/MCU Products

The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the products covered by this manual, refer to the relevant sections of the manual. If the descriptions under General Precautions in the Handling of MPU/MCU Products and in the body of the manual differ from each other, the description in the body of the manual takes precedence.

1. Handling of Unused Pins
 Handle unused pins in accord with the directions given under Handling of Unused Pins in the manual.
 - The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible. Unused pins should be handled as described under Handling of Unused Pins in the manual.

2. Processing at Power-on
 The state of the product is undefined at the moment when power is supplied.
 - The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the moment when power is supplied.
 In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the moment when power is supplied until the reset process is completed.
 In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the moment when power is supplied until the power reaches the level at which resetting has been specified.

3. Prohibition of Access to Reserved Addresses
 Access to reserved addresses is prohibited.
 - The reserved addresses are provided for the possible future expansion of functions. Do not access these addresses; the correct operation of LSI is not guaranteed if they are accessed.

4. Clock Signals
 After applying a reset, only release the reset line after the operating clock signal has become stable. When switching the clock signal during program execution, wait until the target clock signal has stabilized.
 - When the clock signal is generated with an external resonator (or from an external oscillator) during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Moreover, when switching to a clock signal produced with an external resonator (or by an external oscillator) while program execution is in progress, wait until the target clock signal is stable.

5. Differences between Products
 Before changing from one product to another, i.e. to one with a different part number, confirm that the change will not lead to problems.
 - The characteristics of MPU/MCU in the same group but having different part numbers may differ because of the differences in internal memory capacity and layout pattern. When changing to products of different part numbers, implement a system-evaluation test for each of the products.
Notice

1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.

2. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors or omissions from the information included herein.

3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by you or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product.

5. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as indicated below.

<table>
<thead>
<tr>
<th>Quality Grade</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard</td>
<td>Transportation equipment, trains, ships, etc.; traffic control systems; anti-disaster systems; anti-crime systems; and safety equipment etc.</td>
</tr>
<tr>
<td>High Quality</td>
<td>Electronic equipment for defense and aerospace purposes; medical equipment; and industrial robots etc.</td>
</tr>
</tbody>
</table>

6. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or systems manufactured by you.

7. Renesas Electronics products are neither intended nor authorized for use in products or systems where failure of a Renesas Electronics product may cause a direct threat to human life or bodily injury (artificial life support devices or systems, surgical equipment; and industrial robots etc.). You should not use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

8. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. When exporting the Renesas Electronics products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations.

9. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

10. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics products.

11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.

SALES OFFICES

Renesas Electronics Corporation
http://www.renesas.com

Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics Americas Inc.
2880 Scott Boulevard, Santa Clara, CA 95054-2554, U.S.A.
Tel: +1-408-588-6000, Fax: +1-408-588-6130

Renesas Electronics Canada Limited
1710 Northostr Road, Waterloo, Ontario L3V 9C3, Canada
Tel: +1-519-998-9220, Fax: +1-519-998-9219

Renesas Electronics Europe Limited
Dulles Meadow, Millboard House, Braxte End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-651-700, Fax: +44-1628-651-804

Renesas Electronics Europe GmbH
Amtradestrasse 15, 40473 Düsseldorf, Germany
Tel: +49-211-65030, Fax: +49-211-6503-1237

Renesas Electronics (China) Co., Ltd.
7th Floor, Quantum Plaza, No.57 ZhongChui Haidian District, Beijing 100083, P.R.China
Tel: +86-10-8255-1155, Fax: +86-10-8255-7679

Renesas Electronics (Shanghai) Co., Ltd.
Unit 204, 205, AZIA Center, No.1233 Lujiazui Ring Rd., Pudong District, Shanghai 200120, China
Tel: +86-21-567-1818, Fax: +86-21-6887-7898

Renesas Electronics Hong Kong Limited
Unit 1801-1813, 18/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2886-9318, Fax: +852-2886-9022/9044

Renesas Electronics Taiwan Co., Ltd.
13F., Arc. 362, F1, Shih Yi North Road, Taipei, Taiwan
Tel: +886-2-875-9600, Fax: +886-2-875-9670

Renesas Electronics Singapore Pte. Ltd.
80 Benthamwey Road, Unit 455-02 Hubfit Innovation Centre Singapore 339949
Tel: +65-6213-9200, Fax: +65-6213-9300

Renesas Electronics Malaysia Sdn.Bhd.
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46500 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-795-8550, Fax: +60-3-795-8551

Renesas Electronics Korea Co., Ltd.
11F., Renesas Hall of Bldg – 722-2 Yeouik-dong, Kangnam-Ku, Seoul 135-080, Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5141

© 2012 Renesas Electronics Corporation. All rights reserved.