M16C/65 Group

Three-phase Motor Control Timer Function
(Triangular Wave Modulation, Three-phase Mode 1)

1. Abstract
The M16C/65 Groups allow users to select the three-phase motor control timer function operation mode, depending on the user system.

This application note describes microcomputer (MCU) operation when the marked functions in Table 1 are selected.

<table>
<thead>
<tr>
<th>Table 1. Settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item</td>
</tr>
<tr>
<td>Modulation mode</td>
</tr>
<tr>
<td>Timer A11, A21, and A41 control (three-phase mode)</td>
</tr>
<tr>
<td>Output polarity</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

2. Introduction
This application note applies to the M16C/65 Group MCU.

This application note can be used with other M16C Family MCUs which have the same special function registers (SFRs) as the above group. Check the manual for any modifications to functions. Careful evaluation is recommended before using the program described in this application note.
3. Detailed Description

3.1 Triangular Wave Modulation Mode and Three-phase Mode 1

A) Set each register in the three-phase motor control timer function, triangular wave modulation mode, timers A11, A21 and A41 not used (three-phase mode 1).

B) Set bits TAiS and TB2S in the TABSR register to 1 (count started) to decrement the timer B2 counter value \((i = 4, 1, 2)\).

C) One-shot pulse is output from the timer Ai when the timer B2 counter underflows.

D) A one-shot pulse is output from timer Ai when the timer B2 counter underflows.

E) Each phase is output when the timer B2 counter underflows and at the timing of the timer Ai one-shot pulse falling edge.
Figure 1 shows an example diagram of the triangular wave modulation (three-phase mode 1).
3.2 Dead Time

The signal to switch between low active and high active has a dead time. Set the INV14 bit in the INVC1 register to select low active or high active.

Figure 2 shows the dead time when low active logic is selected.
3.3 Three-phase Output Buffer Registers (Registers IDB0 and IDB1)

Figure 3 shows a U-phase output signal operation example with registers IDB0 and IDB1 and each phase output signal. When triangular wave modulation is selected, the individual phase output port reflects the IDB1 register setting as soon as the timer starts.

![Diagram of U-phase output signal operation example](image)

Default values of bits in registers IDB0 and IDB1:
- DU0 = 0, DUB0 = 1, DU1 = 1, DUB1 = 0

Notes:
1. Bits in registers IDB0 and IDB1.
2. Internal signals.

Figure 3. U-phase Output Signal Operation Example
4. Setting Procedure

Set the ICTB2 register

Set the PRC1 bit in the PRCR register to 1 (write enable)

Set the following bits in the INVC0 register:
- the INV06 bit to 0 (triangular wave modulation mode)
- the INV04 bit to 1 (simultaneous turn-on disabled)
- the INV03 bit to 1 (three-phase motor control timer output enabled)
- the INV02 bit to 1 (three-phase motor control timer function used)

Set the following bits in the INVC1 register:
- the INV16 bit to 1 (rising edge of three-phase output shift register output)
- the INV15 bit to 0 (dead time enabled)
- the INV14 bit to 0 (active low)
- the INV12 bit to 0 (f1TIMAB or f2TIMAB)
- the INV11 bit to 1 (three-phase mode 1)
- the INV10 bit to 0 (timer B2 underflows)

Set the PRC1 bit in the PRCR register to 0 (write protected)

Set the PWCON bit in the TB2SC register to 0 (timer B2 underflow)

Set the following bits in the IDB0 register:
- bits DU0, DV0, and DW0 to 0 (active)
- bits DUB0, DVB0, and DWB0 to 1 (inactive)

Set the following bits in the IDB1 register:
- bits DU1, DV1, and DW1 to 1 (inactive)
- bits DUB1, DVB1, and DWB1 to 0 (active)

Set the following bits in the TAiMR register:
- the TMOD1 and TMOD0 bits to 10b (one-shot timer mode)
- the MR3 and MR1 bits to 0
- the MR2 bit to 1 (selected by bits TAiTGH and TAiTGL)
- the TCK1 and TCK0 bits to 00b (f1TIMAB or f2TIMAB)

Set the following bits in the TB2MR register:
- bits TMOD1 and TMOD0 to 00b (timer mode)
- bits TCK1 and TCK0 to 00b (f1TIMAB or f2TIMAB)

Use individual output control circuit (set bits TAiGH and TAiGL in the TRGSR register to 01b (TB2 selected))

Set the TB2 register to 2000h

Set the DTT register to 0080h

Set the TAi register to 0800h

Set the TAi-1 register to 1000h

Reset the TAi-1 register to 1000h (1)

Set the I flag to 1 (interrupt enabled)

Set bits TAiS and TB2S in the TABSR register to "1" (count started)

while(1)

end

Note:
1. Use the following procedure to set the TAi1 register.
2. Wait one timer Ai count source cycle.
3. Set the TAi1 register to the same value as already set in (1).

Figure 4. Triangular Wave Modulation (Three-phase Mode 1) Flowchart
5. Sample Program

Note the following information when setting registers TAi and TAi1.

5.1 TAi Register Setting

Users must avoid setting the TAi register as follow except if necessary.

A) If the TAi register is set to 0000h (0000h or 0100h when the INV12 bit in the INVC register to 1 (f1TIMAB divided-by-2), the TAi timer counter will not start.

B) If the TAi register is set to a value larger than the TB2 register setting value (a value larger than “TB2 register setting value - 1” when the INV12 bit in the INVC register is 1 (f1TIMAB divided-by-2)), the TAi timer counter continues running the number of cycles determined by the TB2 register.

At the end of both events, the output signal level does not change since no falling edges occur.

5.2 Dead Time Timer Restart

Even if the TAi register setting causes the dead time timer to restart while a dead time timer is counting, the dead time timer does not restart counting.

If the following conditions are met, the dead time timer will not restart counting:

- Triangular wave modulation mode (three-phase mode 0): f1TIMAB selected as count source for the dead time timer

 \[(TB2\ \text{register}\ \text{setting}\ \text{value} + 1) - TAi1\ \text{register}\ \text{setting}\ \text{value}\ \text{at an even number of times} + TAi\ \text{register}\ \text{setting}\ \text{value}\ \text{at an odd number of times} < \text{setting value of dead time timer}\]

- Triangular wave modulation mode (three-phase mode 1): f1TIMAB selected as count source for a dead time timer

 \[(TB2\ \text{register}\ \text{setting}\ \text{value} + 1) - TAi1\ \text{register}\ \text{setting}\ \text{value} + TAi\ \text{register}\ \text{setting}\ \text{value}\ \text{at an odd number of times} < \text{setting value of dead time timer}\]

- Sawtooth wave modulation mode: f1TIMAB selected as count source for a dead time timer

 \[(TB2\ \text{register}\ \text{setting}\ \text{value}+1) - TAi\ \text{register}\ \text{setting}\ \text{value} - 1 < \text{setting value of dead time timer}\]

TAi register setting value – 1 < setting value of dead time timer
6. Reference Documents

M16C/65 Group User’s Manual: Hardware (Hardware Manual) Rev.1.10
The latest version can be downloaded from the Renesas Electronics website.

Technical Update/Technical News
The latest information can be downloaded from the Renesas Electronics website.

M16C Series/R8C Family C Compiler Package V.5.45 C Compiler User Manual Rev.2.00
The latest version can be downloaded from the Renesas Electronics website.

Website and Support

Renesas Electronics website
http://www.renesas.com/

Inquiries
http://www.renesas.com/inquiry
<table>
<thead>
<tr>
<th>Rev.</th>
<th>Date</th>
<th>Page</th>
<th>Description</th>
<th>Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00</td>
<td>2010.08.06</td>
<td>—</td>
<td>First edition issued</td>
<td></td>
</tr>
</tbody>
</table>

All trademarks and registered trademarks are the property of their respective owners.
General Precautions in the Handling of MPU/MCU Products

The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the products covered by this manual, refer to the relevant sections of the manual. If the descriptions under General Precautions in the Handling of MPU/MCU Products and in the body of the manual differ from each other, the description in the body of the manual takes precedence.

1. Handling of Unused Pins
 - Handle unused pins in accord with the directions given under Handling of Unused Pins in the manual.
 - The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible. Unused pins should be handled as described under Handling of Unused Pins in the manual.

2. Processing at Power-on
 - The state of the product is undefined at the moment when power is supplied.
 - The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the moment when power is supplied.
 - In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the moment when power is supplied until the reset process is completed.
 - In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the moment when power is supplied until the power reaches the level at which resetting has been specified.

3. Prohibition of Access to Reserved Addresses
 - Access to reserved addresses is prohibited.
 - The reserved addresses are provided for the possible future expansion of functions. Do not access these addresses; the correct operation of LSI is not guaranteed if they are accessed.

4. Clock Signals
 - After applying a reset, only release the reset line after the operating clock signal has become stable. When switching the clock signal during program execution, wait until the target clock signal has stabilized.
 - When the clock signal is generated with an external resonator (or from an external oscillator) during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Moreover, when switching to a clock signal produced with an external resonator (or by an external oscillator) while program execution is in progress, wait until the target clock signal is stable.

5. Differences between Products
 - Before changing from one product to another, i.e. to one with a different type number, confirm that the change will not lead to problems.
 - The characteristics of MPU/MCU in the same group but having different type numbers may differ because of the differences in internal memory capacity and layout pattern. When changing to products of different type numbers, implement a system-evaluation test for each of the products.
SALES OFFICES

Renesas Electronics Corporation

Refer to "http://www.renesas.com" for the latest and detailed information.

Renesas Electronics America Inc.
2886 Scott Boulevard Santa Clara, CA 95050-2554, U.S.A.
Tel: +1-408-588-6000, Fax: +1-408-588-8130

Renesas Electronics Canada Limited
1101 Richardson Road, Neewark, Ontario L6Y 9C3, Canada
Tel: +1-905-898-5441, Fax: +1-905-898-3200

Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K.
Tel: +44-1628-585-100, Fax: +44-1628-585-900

Renesas Electronics GmbH
An der Leun 10, 40472 Dusseldorf, Germany
Tel: +49-211-603-0, Fax: +49-211-603-1327

Renesas Electronics (China) Co., Ltd.
7th Floor, Quantum Plaza, No.27 Zhichunju Haidian District, Beijing 100085, P.R.China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679

Renesas Electronics Hong Kong Limited
Unit 204, 255, 82A Caine Rd, 16/F. Lai King., Pudong District, Shanghai 200120, China
Tel: +86-21-5877-1818, Fax: +86-21-5877-7688

Renesas Electronics (Shanghai) Co., Ltd.
Unit 204, 255, 82A Caine Rd, 16/F. Lai King., Pudong District, Shanghai 200120, China
Tel: +86-21-5877-1818, Fax: +86-21-5877-7688

Renesas Electronics Taiwan Co., Ltd.
7F, No. 303 Fu Shing North Road Taipei, Taiwan, R.O.C.
Tel: +886-2-8175-9000, Fax: +886-2-8175-9178

Renesas Electronics Singapore Pte. Ltd.
1 HarbourFront Avenue, #05-10, Keppel Bay Tower, Singapore 098632
Tel: +65-6213-0200, Fax: +65-6278-8001

Renesas Electronics Malaysia Sdn.Bhd.
Unit 906, Block B, Menara Amcorp, Ampang Trade Centre, No. 18, Jln Persiaran Barat, 46500 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7952-9390, Fax: +60-3-7952-4910

Renesas Electronics Korea Co., Ltd.
11F, Saneo Lane 26-15, 122-2 Yongsan-Dong, Kangnam-Ku, Seoul 135-080, Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5141

© 2010 Renesas Electronics Corporation. All rights reserved.