1. **Abstract**

This application notes describes the setting method and example for the pulse width modulator in the M16C/63, M16C/64A, and M16C/65 Groups.

2. **Introduction**

The application example described in this document applies to the following microcomputers (MCUs):

- **MCUs:** M16C/63 Group
 - M16C/64A Group
 - M16C/65 Group

This application note can be used with other M16C Family MCUs which have the same special function registers (SFRs) as the above groups. Check the user’s manual for any modifications to functions. Careful evaluation is recommended before using the program described in this application note.
3. **Application Example**

This section describes using PWM0 to output a waveform from port P9_3.

3.1 **Application Example Settings**

PWM0 cycle and high-level width are set to approximately 3.0 ms and 100 μs, and output. When an INT0 interrupt is generated, the duty is changed to 50% (high-level width is approximately 1.5 ms).

Table 3.1 lists the Application Example Settings.

<table>
<thead>
<tr>
<th>Item</th>
<th>Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output pins</td>
<td>✓ Output PWM0 signal from P9_3</td>
</tr>
<tr>
<td></td>
<td>✓ Output PWM0 signal from P4_6 (1)</td>
</tr>
<tr>
<td>PWM count sources</td>
<td>✓ f1 divided by 2</td>
</tr>
<tr>
<td></td>
<td>✓ f1 divided by 4</td>
</tr>
<tr>
<td></td>
<td>✓ f1 divided by 8</td>
</tr>
<tr>
<td></td>
<td>✓ f1 divided by 16</td>
</tr>
</tbody>
</table>

Note:
1. Neither the P4_6 nor P4_7 pin exists in the M16C/63 Group 80-pin package.
3.2 Application Example Waveform

Figure 3.1 shows the Sample Output Waveform, and Figure 3.2 shows the PWMPRE0 and PWMREG0 Register Settings.
Peripheral clock (f1) is set to the main clock (XIN = 8 MHz) no division.

![Sample Output Waveform](image)

Figure 3.1 Sample Output Waveform

When the PWM cycle width and high-level width are set to 3 ms and 100 μs corresponding to Figure 3.1 Sample Output Waveform:

Relationship between related registers and PWM cycle, and high-level width is as follows:

\[
\text{PWM cycle} = \frac{(2^k - 1) \times (m + 1)}{f_j} \quad \text{(unit: s)}
\]

\[
\text{High-level width} = \frac{(m + 1) \times n}{f_j} \quad \text{(unit: s)}
\]

\[f_j: \text{Frequency of count source (unit: Hz)} \]
\[m: \text{PWMPRE0 register setting value} \]
\[n: \text{PWMREG0 register setting value} \]

When the frequency of the count source is set to f1 divided by 2:

\[
\text{PWM cycle (approximately 3 ms)} = \frac{(256 - 1) \times (m + 1)}{(8 \times 10^6) / 2}
\]

\[
\text{PWMPRE0 register setting value } m = 46.
\]

\[
\text{High-level width (approximately 100 μs)} = \frac{(46 + 1) \times n}{(8 \times 10^6) / 2}
\]

Assuming the formulas above:

PWMPRE0 register setting value m = 46
PWMREG0 register setting value n = 9

Figure 3.2 PWMPRE0 and PWMREG0 Register Settings
3.3 Flowchart

Figure 3.3 shows the Main Program Flowchart.

![Main Program Flowchart](image)

- **main**
 - CPU clock: Main clock no division
 - I/O ports initial setting.
 - PWM0 function initial setting (set PWM cycle to approximately 3.0 ms, and high-level width to approximately 100 μs).
 - Enable PWM0 output.
 - Set INT0 interrupt priority level 7.
 - Enable maskable interrupts.
 - **INT0 interrupt handling**
 - Set high-level width to approximately 1.5 ms.
 - **pwmreg0 ← 0x80**
 - **Ret**
Sample Program Operation Example

The value written to the PWMREG0 register during PWM0 output is not reflected until the next cycle of PWM0 output begins.

The PWM output signal is low immediately after the MCU is reset. Then the associated waveform output starts. Figure 3.4 shows the PWM0 Output Example of the Sample Program.

<table>
<thead>
<tr>
<th>PWMEN0 bit in the PWMCON1 register</th>
<th>INT0 pin</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PWM0 prescaler prelatch</td>
</tr>
<tr>
<td></td>
<td>Reset value</td>
</tr>
<tr>
<td></td>
<td>PWM0 register prelatch</td>
</tr>
<tr>
<td></td>
<td>Set registers PWMPRE0 and PWMREG0 by a program.</td>
</tr>
<tr>
<td></td>
<td>00h</td>
</tr>
<tr>
<td></td>
<td>2Eh</td>
</tr>
<tr>
<td></td>
<td>09h</td>
</tr>
<tr>
<td></td>
<td>80h</td>
</tr>
<tr>
<td>PWM0 prescaler latch</td>
<td></td>
</tr>
<tr>
<td>Reset value</td>
<td></td>
</tr>
<tr>
<td></td>
<td>00h</td>
</tr>
<tr>
<td></td>
<td>09h</td>
</tr>
<tr>
<td></td>
<td>80h</td>
</tr>
<tr>
<td>PWM0 register latch</td>
<td></td>
</tr>
<tr>
<td>Rewritten reset value but before PWM0 output enabled is reflected in the second cycle of PWM0 output.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(2Eh + 1) × 09h</td>
</tr>
<tr>
<td></td>
<td>(8 × 10^6) / 2</td>
</tr>
<tr>
<td></td>
<td>Value rewritten during PWM output is reflected in the next cycle.</td>
</tr>
<tr>
<td></td>
<td>(2Eh + 1) × 80h</td>
</tr>
<tr>
<td></td>
<td>(8 × 10^6) / 2</td>
</tr>
<tr>
<td>PWM0 output</td>
<td></td>
</tr>
<tr>
<td>Low-level output</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(2^8 - 1) × (0 + 1)</td>
</tr>
<tr>
<td></td>
<td>(8 × 10^6) / 2</td>
</tr>
<tr>
<td></td>
<td>(2^8 - 1) × (2Eh + 1)</td>
</tr>
<tr>
<td></td>
<td>(8 × 10^6) / 2</td>
</tr>
<tr>
<td></td>
<td>This length of a low-level signal is output for the first cycle after reset.</td>
</tr>
</tbody>
</table>

The above diagram assumes the PWMPORT0 bit in the PWMCON1 register is 1 (PWM output).

Figure 3.4 PWM0 Output Example of the Sample Program
3.5 Register Settings

Figure 3.5 to Figure 3.7 show Register Settings.

Figure 3.5 Register Settings (1)
Example of Pulse Width Modulator

Figure 3.6 Register Settings (2)

- **PWM Control Register 0 (PWMCON0)**
 - **PWMSEL0**
 - 0: Output PWM0 signal from P9_3
 - 1: Output PWM0 signal from P4_6
 - **PWMCLK1 and PWMCLK0**
 - 00: f1 divided by 2
 - 01: f1 divided by 4
 - 10: f1 divided by 8
 - 11: f1 divided by 16

- **PWM Control Register 1 (PWMCON1)**
 - **PWMEN0**
 - 0: Output disabled
 - 1: Output enabled
 - **PWMPORT0**
 - 0: I/O port
 - 1: PWM0 output

- **Peripheral Clock Stop Register 1 (PCLKSTP1)**
 - **PCKSTP16**
 - 0: f1 provide enabled
 - 1: f1 provide disabled

- **Protect Register (PRCR)**
 - **PRC0**
 - 1: Write enabled
 - 0: Write protected

Set these only when using the M16C/63 Group.
Example of Pulse Width Modulator

Figure 3.7 Register Settings (3)

INTE interrupt handling

PWM0 Register (PWMREG0)

Output high-level pulse width Setting range from 00h to FFh

80h
4. Sample Program

A sample program can be downloaded from the Renesas Electronics website.
To download, click “Application Notes” in the left-hand side menu of the M16C Family page.

5. Reference Documents

M16C/63 Group User’s Manual: Hardware Rev.1.00
M16C/64A Group User’s Manual: Hardware Rev.1.10
M16C/65 Group User’s Manual: Hardware Rev.1.10
The latest versions can be downloaded from the Renesas Electronics website.

Technical Update/Technical News
The latest information can be downloaded from the Renesas Electronics website.

C Compiler User’s Manual
M16C Series, R8C Family C Compiler Package V.5.45
C Compiler User’s Manual Rev.2.00
The latest version can be downloaded from the Renesas Electronics website.

Website and Support

Renesas Electronics website
http://www.renesas.com/

Inquiries
http://www.renesas.com/inquiry
<table>
<thead>
<tr>
<th>Rev.</th>
<th>Date</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00</td>
<td>Aug 31, 2010</td>
<td>First edition issued</td>
</tr>
</tbody>
</table>
General Precautions in the Handling of MPU/MCU Products

The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the products covered by this manual, refer to the relevant sections of the manual. If the descriptions under General Precautions in the Handling of MPU/MCU Products and in the body of the manual differ from each other, the description in the body of the manual takes precedence.

1. Handling of Unused Pins
 Handle unused pins in accord with the directions given under Handling of Unused Pins in the manual.
 - The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible. Unused pins should be handled as described under Handling of Unused Pins in the manual.

2. Processing at Power-on
 The state of the product is undefined at the moment when power is supplied.
 - The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the moment when power is supplied. In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the moment when power is supplied until the reset process is completed. In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the moment when power is supplied until the power reaches the level at which resetting has been specified.

3. Prohibition of Access to Reserved Addresses
 Access to reserved addresses is prohibited.
 - The reserved addresses are provided for the possible future expansion of functions. Do not access these addresses; the correct operation of LSI is not guaranteed if they are accessed.

4. Clock Signals
 After applying a reset, only release the reset line after the operating clock signal has become stable. When switching the clock signal during program execution, wait until the target clock signal has stabilized.
 - When the clock signal is generated with an external resonator (or from an external oscillator) during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Moreover, when switching to a clock signal produced with an external resonator (or by an external oscillator) while program execution is in progress, wait until the target clock signal is stable.

5. Differences between Products
 Before changing from one product to another, i.e. to one with a different part number, confirm that the change will not lead to problems.
 - The characteristics of MPU/MCU in the same group but having different part numbers may differ because of the differences in internal memory capacity and layout pattern. When changing to products of different part numbers, implement a system-evaluation test for each of the products.
Notice

1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.

4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application example. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.

5. When exporting the product or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High-Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.

8. "Standard": Computer; office equipment; communication equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

9. "High-Quality": Transportation equipment (automobiles, train, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically designed for life support.

10. "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g., artificial life support devices or systems); surgical implants; or healthcare intervention (e.g. exoskeleton, etc.) and any other applications or purposes that pose a direct threat to human life.

11. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.

12. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.

13. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

14. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.

15. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

(Note 2) "Renesas Electronics products" means any product developed or manufactured by or for Renesas Electronics.