1. Abstract

In receiving data in UART mode, choose functions from those listed in Table 3.1. Operations of the marked items are described below. The examples are explained below using the M16C/65 Group.

2. Introduction

This application note is applied to the following MCUs:

MCU(s): M16C/63, 64A, 64C, 65, 65C, 6C, 5LD, 56D, 5L, 56, 5M, 57 Groups

This application note can be used with other M16C Family MCUs which have the same special function registers (SFRs) as the above groups. Check the manual for any modifications to functions. Careful evaluation is recommended before using the program described in this application note.
3. Chosen functions

Table 3.1 Chosen Functions

<table>
<thead>
<tr>
<th>Item</th>
<th>Set-up</th>
<th>Item</th>
<th>Set-up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clock prior to division select</td>
<td>✓ f1</td>
<td>Data logic select function</td>
<td>✓ No reverse</td>
</tr>
<tr>
<td></td>
<td>✓ fOCO-F</td>
<td></td>
<td>Reverse</td>
</tr>
<tr>
<td>Peripheral clock</td>
<td>✓ f1SIO</td>
<td>TXD, RXD I/O polarity reverse bit</td>
<td>✓ No reverse</td>
</tr>
<tr>
<td></td>
<td>✓ f2SIO</td>
<td></td>
<td>Reverse</td>
</tr>
<tr>
<td>Transfer clock source</td>
<td>✓ Internal clock</td>
<td>Separate CTS/RTS pins (1)</td>
<td>✓ Shared pin</td>
</tr>
<tr>
<td></td>
<td>(f1SIO/f2SIO/f8SIO/f32SIO)</td>
<td></td>
<td>Separated</td>
</tr>
<tr>
<td></td>
<td>✓ External clock (CLKi pin)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RTS function</td>
<td>✓ RTS function enabled</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>✓ RTS function disable</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note:
1. This function separates CTS0/RTS0, outputs RTS0 from the P6_0 pin, and inputs CTS0 from the P6_4 pin. When this function is selected, UART1 CTS/RTS function can not be utilized. Set the UART1 CTS/RTS disable bit to “1”.

4. Operation

(1) Setting the receive enable bit to “1” reads data-receivable status. At this time, output from the RTSi pin goes to “L” level to inform the transmission side that the receivable status is ready.

(2) When the first bit (the start bit) of reception data is received from the RxDi pin, output from the RTS goes to “H” level. Then, data is received, bit by bit, in sequence: LSB, ⋯, MSB, and stop bit(s).

(3) When the stop bit(s) is (are) received, the content of the UARTi receive register is transmitted to the UARTi receive buffer register. At this time, the receive complete flag goes to “1” to indicate that the reception is completed, the UARTi receive interrupt request bit goes to “1”.

(4) When the lower-order byte of the UARTi buffer register is read, the receive complete flag goes to “0”, and output from the RTS pin goes to “L” level.
Figure 4.1 shows the operation timing.

Example of wiring

Example of operation

Timing of transfer data applies to the following settings:
- Transfer data length is 8 bits.
- Parity is disabled.
- One stop bit.
- RTS function is selected.

Figure 4.1 Operation Timing of Reception in UART Mode
5. Set-up Procedure

Setting UART clock select register
(Set the OCOSEL0 or OCOSEL1 bit before setting other registers associated with UART0 to UART2 and UART5 to UART7. After changing the OCOSEL0 or OCOSEL1 bit, set other registers associated with UART0 to UART2 and UART5 to UART7 again.)

Setting UART transmit/receive mode register (i = 0 to 2, 5 to 7)

Note: Set bits OCOSEL0 and OCOSEL1 while transmission/reception of UART0 to UART2 and UART5 to UART7 stops.
Setting UARTi transmit/receive control register (i = 0 to 2, 5 to 7)

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>b0</td>
<td>CTS/RTS disable bit</td>
</tr>
<tr>
<td>b1</td>
<td>Data output select bit</td>
</tr>
<tr>
<td>b2</td>
<td>Transfer format select bit</td>
</tr>
<tr>
<td>b3</td>
<td>Transmit register empty flag</td>
</tr>
<tr>
<td>b4</td>
<td>CTS/RTS function select bit (Valid when bit 4 = “0”)</td>
</tr>
<tr>
<td>b5</td>
<td>UARTBRG count source select bit</td>
</tr>
</tbody>
</table>

Notes:
- **Note 1:** When the PCLK1 bit in the PCLKR register is “1”, the selected clock source is f₁SIO. When the PCLK1 bit is “0”, the selected clock source is f₂SIO.
- **Note 2:** Set the corresponding port direction register to “1” (output mode).

Setting UART transmit/receive control register 2

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>b0</td>
<td>DATA output select bit</td>
</tr>
<tr>
<td>b1</td>
<td>Transfer format select bit</td>
</tr>
<tr>
<td>b2</td>
<td>Transmit register empty flag</td>
</tr>
<tr>
<td>b3</td>
<td>CTS/RTS function enable</td>
</tr>
</tbody>
</table>

Notes:
- Must always be “0” in UART mode.

Setting UART transmit/receive control register (Address 024Ch) U0C0

Setting UART transmit/receive control register 2 (Address 0250h) UCON

- Must always be “0” in UART mode.
- Must always be “0” in UART mode.
- Invalid in UART mode.
- Must always be “0” in UART mode.
- Separate UART0 CTS/RTS bit.
- CTS/RTS shared pin.

CTS/RTS disable bit

- 0: CTS/RTS function enabled
- 1: CTS/RTS function is selected (Note2)

Transmit register empty flag

- 0: Data present in transmit register (during transmission)
- 1: No data present in transmit register (transmission completed)

UiBRG count source select bit

- 0 0: f₁SIO or f₂SIO is selected (Note1)
- 0 1: f₃SIO is selected
- 1 0: f₄SIO is selected
- 1 1: Do not set to this value

Transmit register empty flag

- 0: Data present in transmit register (during transmission)
- 1: No data present in transmit register (transmission completed)

Note 1: When the PCLK1 bit in the PCLKR register is “1”, the selected clock source is f₁SIO. When the PCLK1 bit is “0”, the selected clock source is f₂SIO.

Note 2: Set the corresponding port direction register to “1” (output mode).
Setting UARTi transmit/receive control register1 (i = 0 to 2, 5 to 7)

UART0 transmit/receive control register 1 [Address 024Dh] U0C1
UART1 transmit/receive control register 1 [Address 025Dh] U1C1

Data logic select bit
0 : No reverse

Error signal output enable bit
0 : Output disabled

UART2 transmit/receive control register 1 [Address 026Dh] U2C1
UART5 transmit/receive control register 1 [Address 028Dh] U5C1
UART6 transmit/receive control register 1 [Address 029Dh] U6C1
UART7 transmit/receive control register 1 [Address 02ADh] U7C1

Must always be “0” in UART mode

Data logic select bit
0 : No reverse

Error signal output enable bit
0 : Output disabled

Note: Write to the UiBRG register while serial interface is neither transmitting nor receiving. Use MOV instruction to write to the UiBRG register. Write to the UiBRG register after setting bits CLK1 to CLK0 in the UiC0 register.

Setting UARTi bit rate register (i = 0 to 2, 5 to 7)

UART0 bit rate register [Address 0249h] U0BRG
UART1 bit rate register [Address 0259h] U1BRG
UART2 bit rate register [Address 0269h] U2BRG
UART5 bit rate register [Address 0289h] U5BRG
UART6 bit rate register [Address 0299h] U6BRG
UART7 bit rate register [Address 02A9h] U7BRG

Can be set to 00h to FFh (Note)

Reception enabled

UART0 transmit/receive control register 1 [Address 024Dh] U0C1
UART1 transmit/receive control register 1 [Address 025Dh] U1C1

Receive enable bit
1 : Reception enabled

UART2 transmit/receive control register 1 [Address 026Dh] U2C1
UART5 transmit/receive control register 1 [Address 028Dh] U5C1
UART6 transmit/receive control register 1 [Address 029Dh] U6C1
UART7 transmit/receive control register 1 [Address 02ADh] U7C1

Receive enable bit
1 : Reception enabled
Checking completion of reception

UART0 transmit/receive control register 1 [Address 024Dh] U0C1
UART1 transmit/receive control register 1 [Address 025Dh] U1C1
UART2 transmit/receive control register 1 [Address 026Dh] U2C1
UART5 transmit/receive control register 1 [Address 028Dh] U5C1
UART6 transmit/receive control register 1 [Address 029Dh] U6C1
UART7 transmit/receive control register 1 [Address 02ADh] U7C1

Receive complete flag
0 : No data present in receive buffer register
1 : Data present in receive buffer register

Checking error

UART0 receive buffer register [Address 024Fh, 024Eh] U0RB
UART1 receive buffer register [Address 025Fh, 025Eh] U1RB
UART2 receive buffer register [Address 026Fh, 026Eh] U2RB
UART5 receive buffer register [Address 028Fh, 028Eh] U5RB
UART6 receive buffer register [Address 029Fh, 029Eh] U6RB
UART7 receive buffer register [Address 02AFh, 02AEh] U7RB

Receive data
Overrun error flag
0 : No overrun error
1 : Overrun error found
Framing error flag
0 : No framing error
1 : Framing error found
Parity error flag
0 : No parity error
1 : Parity error found
Error sum flag
0 : No error
1 : Error found
6. Sample Code
Sample code can be downloaded from the Renesas Electronics website.

7. Reference Documents
M16C/63 Group User’s Manual: Hardware Rev.2.00
M16C/64A Group User’s Manual: Hardware Rev.2.00
M16C/64C Group User’s Manual: Hardware Rev.1.00
M16C/65 Group User’s Manual: Hardware Rev.2.00
M16C/65C Group User’s Manual: Hardware Rev.1.00
M16C/6C Group User’s Manual: Hardware Rev.2.00
M16C/5LD Group, M16C/56D Group User’s Manual: Hardware Rev.1.10
M16C/5L Group, M16C/56 Group User’s Manual: Hardware Rev.1.00
M16C/5M Group, M16C/57 Group User’s Manual: Hardware Rev.1.01
The latest version can be downloaded from the Renesas Electronics website.

Technical Update/Technical News
The latest information can be downloaded from the Renesas Electronics website.

C Compiler Manual
M16C Series, R8C Family C Compiler Package V.5.45
C Compiler User’s Manual Rev.2.00
The latest version can be downloaded from the Renesas Electronics website.

8. Website and Support
Renesas Electronics website
http://www.renesas.com/

Inquiries
http://www.renesas.com/inquiry
<table>
<thead>
<tr>
<th>Rev.</th>
<th>Date</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00</td>
<td>Oct. 30, 2009</td>
<td>— First edition issued</td>
</tr>
<tr>
<td>1.01</td>
<td>Apr. 28, 2011</td>
<td>— Add: M16C/63, M16C/64A, M16C/64C, M16C/65C, M16C/6C, M16C/5LD,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M16C/56D, M16C/5L, M16C/56, M16C/5M, and M16C/57</td>
</tr>
</tbody>
</table>

All trademarks and registered trademarks are the property of their respective owners.
General Precautions in the Handling of MPU/MCU Products

The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the products covered by this manual, refer to the relevant sections of the manual. If the descriptions under General Precautions in the Handling of MPU/MCU Products and in the body of the manual differ from each other, the description in the body of the manual takes precedence.

1. Handling of Unused Pins
 Handle unused pins in accord with the directions given under Handling of Unused Pins in the manual.
 - The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible. Unused pins should be handled as described under Handling of Unused Pins in the manual.

2. Processing at Power-on
 The state of the product is undefined at the moment when power is supplied.
 - The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the moment when power is supplied. In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the moment when power is supplied until the reset process is completed.
 - In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the moment when power is supplied until the power reaches the level at which resetting has been specified.

3. Prohibition of Access to Reserved Addresses
 Access to reserved addresses is prohibited.
 - The reserved addresses are provided for the possible future expansion of functions. Do not access these addresses; the correct operation of LSI is not guaranteed if they are accessed.

4. Clock Signals
 After applying a reset, only release the reset line after the operating clock signal has become stable. When switching the clock signal during program execution, wait until the target clock signal has stabilized.
 - When the clock signal is generated with an external resonator (or from an external oscillator) during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Moreover, when switching to a clock signal produced with an external resonator (or by an external oscillator) while program execution is in progress, wait until the target clock signal is stable.

5. Differences between Products
 Before changing from one product to another, i.e. to one with a different part number, confirm that the change will not lead to problems.
 - The characteristics of MPU/MCU in the same group but having different part numbers may differ because of the differences in internal memory capacity and layout pattern. When changing to products of different part numbers, implement a system-evaluation test for each of the products.
Notice

1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties or for arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.

4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacturer, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are cleared according to the following three quality grades: “Standard”, “High Quality”, and “Specific”. The recommended applications for each Renesas Electronics product depend on the product’s quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics.

8. Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard against the possibility of physical injury, and injury or damage caused by the in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of reconfigurable computer alone is very difficult, please evaluate the safety of the final products or system manufactured by you.

9. Renesas Electronics assumes no liability for any damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

10. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.

11. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for any application categorized as “Specific” without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for any application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.

13. Notice

Notice