Abstract

This document describes how to determine a 50 Hz or 60 Hz commercial power frequency using timer A event counter mode with the M16C/63, 64A, 64C, 65, 65C, 6C, 5LD, 56D, 5L, 56, 5M, and 57 Groups.

Products

M16C/63, 64A, 64C, 65, 65C, 6C, 5LD, 56D, 5L, 56, 5M, and 57 Groups

When using this application note with other Renesas MCUs, careful evaluation is recommended after making modifications to comply with the alternate MCU.
Contents

1. Specifications .. 3
2. Operation Confirmation Conditions .. 4
3. Hardware .. 4
 3.1 Pin Used ... 4
4. Software .. 5
 4.1 Operation Outline ... 6
 4.2 Required Memory Size ... 7
 4.3 Constants .. 7
 4.4 Variables .. 7
 4.5 Functions ... 7
 4.6 Function Specifications ... 8
 4.7 Flowcharts .. 9
 4.7.1 Main Processing ... 9
 4.7.2 Peripheral Function Initialization ... 10
4. Sample Code ... 11
6. Reference Documents .. 11
1. Specifications

A zero-crossing signal is output using a zero-crossing detector from an AC power input voltage. The output zero-crossing signal is input to the TA0IN pin, and its rising edge is counted. Rising edges are counted for 1 second, then a 50 Hz or 60 Hz commercial power frequency is determined. Timer A0 event counter mode is used to count the number of rising edges.

Table 1.1 lists the Peripheral Functions and Their Applications. Figure 1.1 shows the Connection Example, and Figure 1.2 shows Detecting Zero-Crossing of AC Power Voltage.

Table 1.1 Peripheral Functions and Their Applications

<table>
<thead>
<tr>
<th>Peripheral Function</th>
<th>Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>Timer (timer A0)</td>
<td>Counts rising edges of zero-crossing signals using event counter mode</td>
</tr>
<tr>
<td>Timer (timer A1)</td>
<td>Measures time to operate timer A0 (1 second)</td>
</tr>
</tbody>
</table>

Figure 1.1 Connection Example

Figure 1.2 Detecting Zero-Crossing of AC Power Voltage
2. Operation Confirmation Conditions

The sample code accompanying this application note has been run and confirmed under the conditions below.

Table 2.1 Operation Confirmation Conditions

<table>
<thead>
<tr>
<th>Item</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCU used</td>
<td>M16C/65 Group</td>
</tr>
<tr>
<td>Operating frequencies</td>
<td>• XIN Clock: 8 MHz</td>
</tr>
<tr>
<td></td>
<td>• CPU clock: 32 MHz (PLL operation mode: divided by 2, multiplied by 8)</td>
</tr>
<tr>
<td>Operating voltage</td>
<td>5 V (available between 2.7 to 5.5 V)</td>
</tr>
<tr>
<td>Integrated development</td>
<td>Renesas Electronics Corporation</td>
</tr>
<tr>
<td>environment</td>
<td>High-performance Embedded Workshop Version 4.09</td>
</tr>
<tr>
<td>C compiler</td>
<td>Renesas Electronics Corporation</td>
</tr>
<tr>
<td></td>
<td>M16C Series/R8C Family C Compiler V.5.45 Release 01</td>
</tr>
<tr>
<td></td>
<td>Compile options</td>
</tr>
<tr>
<td></td>
<td>-c -finfo -dir "$(CONFIGDIR)"</td>
</tr>
<tr>
<td></td>
<td>(The default setting is used in the integrated development environment.)</td>
</tr>
<tr>
<td>Operating mode</td>
<td>Single-chip mode</td>
</tr>
<tr>
<td>Sample code version</td>
<td>Version 1.00</td>
</tr>
</tbody>
</table>

3. Hardware

3.1 Pin Used

Table 3.1 lists the Pin Used and Its Function.

Table 3.1 Pin Used and Its Function

<table>
<thead>
<tr>
<th>Pin Name</th>
<th>I/O</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>P7_1/TA0IN</td>
<td>Input</td>
<td>Inputs zero-crossing signals from the zero-crossing detector</td>
</tr>
</tbody>
</table>
4. Software

Timer A0 (event counter mode) and timer A1 (timer mode) are used in the sample code. Count the rising edges of zero-crossing signals for 1 second, and determine whether commercial power frequency is 50 Hz or 60 Hz according to Table 4.1.

<table>
<thead>
<tr>
<th>Number of Edges Counted for 1 Second</th>
<th>Determination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Less than or equal to 44</td>
<td>Error</td>
</tr>
<tr>
<td>More than or equal to 45, and less than or equal to 54</td>
<td>50 Hz</td>
</tr>
<tr>
<td>More than or equal to 55, and less than or equal to 64</td>
<td>60 Hz</td>
</tr>
<tr>
<td>More than or equal to 65</td>
<td>Error</td>
</tr>
</tbody>
</table>

Setting conditions for timers A0 and A1 are listed below.

<table>
<thead>
<tr>
<th>Item</th>
<th>Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operation mode</td>
<td>Event counter mode</td>
</tr>
<tr>
<td>Count source</td>
<td>External signal that is input to the TA0IN pin (rising edges)</td>
</tr>
<tr>
<td>Count operation</td>
<td>Increment</td>
</tr>
<tr>
<td>TA0IN pin function</td>
<td>Count source input</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Item</th>
<th>Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operation mode</td>
<td>Timer mode</td>
</tr>
<tr>
<td>Count source</td>
<td>f64TIMAB</td>
</tr>
<tr>
<td>Count operation</td>
<td>Decrement</td>
</tr>
</tbody>
</table>
4.1 Operation Outline

1. Initialize the CPU.
 - Set the PLL clock divided by 2, and multiplied by 8 as the CPU clock.
2. Initialize timers A0 and A1.
 - Set timer A0 to event counter mode, and timer A1 to timer mode.
4. Count rising edges of zero-crossing signals for 1 second.
 - Measure 1 second with timer A1, and count the rising edges of input zero-crossing signals for 1 second with timer A0.
5. Determine commercial power frequency.
 - Determine commercial power frequency using the timer A0 register value.

Figure 4.1 shows the Operation Outline.
4.2 Required Memory Size

Table 4.4 lists the Required Memory Size.

<table>
<thead>
<tr>
<th>Memory Used</th>
<th>Size</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROM</td>
<td>239 bytes</td>
<td>In the r01an0806_src.c module</td>
</tr>
<tr>
<td>RAM</td>
<td>4 bytes</td>
<td>In the r01an0806_src.c module</td>
</tr>
<tr>
<td>Maximum user stack usage</td>
<td>10 bytes</td>
<td></td>
</tr>
<tr>
<td>Maximum interrupt stack usage</td>
<td>18 bytes</td>
<td></td>
</tr>
</tbody>
</table>

The required memory size varies depending on the C compiler version and compile options.

4.3 Constants

Table 4.5 lists the Constants Used in the Sample Code.

<table>
<thead>
<tr>
<th>Constant Name</th>
<th>Setting Value</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>TA1_1S</td>
<td>10</td>
<td>For measuring 1 second</td>
</tr>
<tr>
<td>TA1_100MS</td>
<td>(50000 - 1)</td>
<td>Timer A1 register setting value</td>
</tr>
<tr>
<td>HZ_JDG_ERR</td>
<td>FFh</td>
<td>The determination is an error.</td>
</tr>
<tr>
<td>HZ_JDG_50</td>
<td>01h</td>
<td>The determination is 50 Hz.</td>
</tr>
<tr>
<td>HZ_JDG_60</td>
<td>02h</td>
<td>The determination is 60 Hz.</td>
</tr>
</tbody>
</table>

4.4 Variables

Table 4.6 lists the Global Variables.

<table>
<thead>
<tr>
<th>Type</th>
<th>Variable Name</th>
<th>Contents</th>
<th>Function Used</th>
</tr>
</thead>
<tbody>
<tr>
<td>unsigned char</td>
<td>cnt_ta1_100ms</td>
<td>100 ms counter</td>
<td>main</td>
</tr>
<tr>
<td>unsigned short</td>
<td>cnt_result</td>
<td>Store the timer A0 register value.</td>
<td>main</td>
</tr>
<tr>
<td>unsigned char</td>
<td>hz_jdg</td>
<td>Store the determination result.</td>
<td>main</td>
</tr>
</tbody>
</table>

4.5 Functions

Table 4.7 lists the Functions.

<table>
<thead>
<tr>
<th>Function Name</th>
<th>Outline</th>
</tr>
</thead>
<tbody>
<tr>
<td>main</td>
<td>Main processing</td>
</tr>
<tr>
<td>mcu_init</td>
<td>CPU initialization</td>
</tr>
<tr>
<td>peripheral_init</td>
<td>Peripheral function initialization</td>
</tr>
</tbody>
</table>
4.6 Function Specifications

The following tables list the sample code function specifications.

<table>
<thead>
<tr>
<th>Function</th>
<th>Outline</th>
<th>Header</th>
<th>Declaration</th>
<th>Description</th>
<th>Argument</th>
<th>Returned value</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>mcu_init</td>
<td>CPU initialization</td>
<td>None</td>
<td>void mcu_init(void)</td>
<td>Set the PLL clock divided by 2, and multiplied by 8 as the CPU clock.</td>
<td>None</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>peripheral_init</td>
<td>Peripheral function initialization</td>
<td>None</td>
<td>void peripheral_init(void)</td>
<td>• Timer A0: Set to event counter mode. • Timer A1: Set to timer mode.</td>
<td>None</td>
<td>None</td>
<td></td>
</tr>
</tbody>
</table>
4.7 Flowcharts

4.7.1 Main Processing

Figure 4.2 shows the Main Processing.

```
Figure 4.2 Main Processing
```

```
main

Disabled maskable interrupt
I flag ← 0

Initialize the CPU
mcu_init()

Set the PLL clock divided by 2, and multiplied by 8 as the CPU clock.

Initialize timers A0 and A1
peripheral_init()

Initialize timers A0 and A1.
Timer A0: Event counter mode
(count external signals that are input to the TA0IN pin).
Timer A1: Timer mode (measure 1 second).

Initialize variables used

Start counting timers A0 and A1

Count the rising edges of zero-crossing signals that are input to the TA0IN pin for 1 second.

Stop counting timers A0 and A1

Timer A0 overflowed?
Yes
No

Read the timer A0 register value
cnt_result ← TA0 register

45 ≤ counter value ≤ 54
Yes

55 ≤ counter value ≤ 64
No

Determined to be an error

Frequency is 50 Hz
Frequency is 60 Hz
Determined to be an error
```

Determined to be an error
4.7.2 Peripheral Function Initialization

Figure 4.3 shows the Peripheral Function Initialization.

```plaintext
peripheral_init

Set timer A0

TA0MR register ← 09h
  Bits TMOD1 and TMOD0 = 01b: Event counter mode
  MR0 bit = 0: Pulse is not output
  MR1 bit = 1: Count rising edges of external signals
  TCK0 bit = 0: Reload type

ONSF register
  Bits TA0TGL and TA0TGH ← 00b: Input on TA0IN pin selected

UDF register
  TA0UD bit ← 1: Increment
  TA0 register ← 0000h

Clear the interrupt request bit for timer A0

TA0IC register ← 00h
  Bits ILVL2 to ILVL0 = 000b: Level 0 (interrupt disabled)
  IR bit ← 0: Interrupt not requested

Set timer A1

TA1MR register ← 00h
  Bits TMOD1 and TMOD0 = 00b: Timer mode
  MR0 bit = 0: Pulse is not output

TACS0 register ← 80h
  Bits TCS6 to TCS4 = 011b: f64TIMAB
  TCS7 bit = 1: TCK0, TCK1 disabled, TCS4 to TCS6 enabled

TA1 register ← 50000 - 1

Clear the interrupt request bit for timer A1

TA1IC register ← 00h
  Bits ILVL2 to ILVL0 = 000b: Level 0 (interrupt disabled)
  IR bit ← 0: Interrupt not requested

return
```

Figure 4.3 Peripheral Function Initialization
5. Sample Code
Sample code can be downloaded from the Renesas Electronics website.

6. Reference Documents
M16C/63 Group User’s Manual: Hardware Rev. 2.00
M16C/64A Group User’s Manual: Hardware Rev. 2.00
M16C/64C Group User’s Manual: Hardware Rev. 1.00
M16C/65 Group User’s Manual: Hardware Rev. 2.00
M16C/65C Group User’s Manual: Hardware Rev. 1.00
M16C/6C Group User’s Manual: Hardware Rev. 2.00
M16C/5L Group, M16C/56 Group User’s Manual: Hardware Rev. 1.10
M16C/5LD Group, M16C/56D Group User’s Manual: Hardware Rev. 1.10
M16C/5M Group, M16C/57 Group User’s Manual: Hardware Rev. 1.10
The latest versions can be downloaded from the Renesas Electronics website.

Technical Update/Technical News
The latest information can be downloaded from the Renesas Electronics website.

C Compiler Manual
M16C Series/R8C Series C Compiler Package V.5.45
C Compiler User’s Manual Rev. 2.00
The latest version can be downloaded from the Renesas Electronics website.

Website and Support
Renesas Electronics website
http://www.renesas.com/

Inquiries
http://www.renesas.com/inquiry
<table>
<thead>
<tr>
<th>Rev.</th>
<th>Date</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00</td>
<td>Nov. 30, 2011</td>
<td>First edition issued</td>
</tr>
</tbody>
</table>

All trademarks and registered trademarks are the property of their respective owners.
General Precautions in the Handling of MPU/MCU Products

The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the products covered by this manual, refer to the relevant sections of the manual. If the descriptions under General Precautions in the Handling of MPU/MCU Products and in the body of the manual differ from each other, the description in the body of the manual takes precedence.

1. Handling of Unused Pins
 Handle unused pins in accord with the directions given under Handling of Unused Pins in the manual.
 - The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible. Unused pins should be handled as described under Handling of Unused Pins in the manual.

2. Processing at Power-on
 The state of the product is undefined at the moment when power is supplied.
 - The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the moment when power is supplied.
 In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the moment when power is supplied until the reset process is completed.
 In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the moment when power is supplied until the power reaches the level at which resetting has been specified.

3. Prohibition of Access to Reserved Addresses
 Access to reserved addresses is prohibited.
 - The reserved addresses are provided for the possible future expansion of functions. Do not access these addresses; the correct operation of LSI is not guaranteed if they are accessed.

4. Clock Signals
 After applying a reset, only release the reset line after the operating clock signal has become stable. When switching the clock signal during program execution, wait until the target clock signal has stabilized.
 - When the clock signal is generated with an external resonator (or from an external oscillator) during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Moreover, when switching to a clock signal produced with an external resonator (or by an external oscillator) while program execution is in progress, wait until the target clock signal is stable.

5. Differences between Products
 Before changing from one product to another, i.e. to one with a different part number, confirm that the change will not lead to problems.
 - The characteristics of MPU/MCU in the same group but having different part numbers may differ because of the differences in internal memory capacity and layout pattern. When changing to products of different part numbers, implement a system-evaluation test for each of the products.
Notice

1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products and/or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.

4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depend on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheet or data book, etc.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum ratings, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failures at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final product or system manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for malfunctions or damages occurring as a result of your noncompliance with applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

SALES OFFICES
Renesas Electronics Corporation
http://www.renesas.com

Refer to “http://www.renesas.com/” for the latest and detailed information.

Renesas Electronics America Inc.
2890 Scott Boulevard Santa Clara, CA 95050-2554, U.S.A.
Tel: +1-408-588-6000, Fax: +1-408-588-6130

Renesas Electronics Canada Limited
1101 McKechnie Road, Newmarket, Ontario L3Y 9C3, Canada
Tel: +1-905-898-5441, Fax: +1-905-898-3220

Renesas Electronics Europe Limited
Dukes Meadow, Millford Road, Bisham End, Buckinghamshire, SL8 5FH, U.K.
Tel: +44-1628-585-100, Fax: +44-1628-585-900

Renesas Electronics Europe GmbH
Anstadtpad 12, 40472 Dusseldorf, Germany
Tel: +49-211-65030, Fax: +49-211-6503-1327

Renesas Electronics (China) Co., Ltd.
22F, 100,Quantum Plaza, No.27, Zhonglu Haidian District, Beijing 100083, P.R.China
Tel: +86-10-6230-1155, Fax: +86-10-6230-7979

Renesas Electronics (Shanghai) Co., Ltd.
Unit 204, 205, ADA Center, No.1253 Lupuza Hong Rd., Pudong District, Shanghai 200120, China
Tel: +86-21-5875-1819, Fax: +86-21-5875-7888

Renesas Electronics Hong Kong Limited
Unit 1901-3, 19/F, Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2866-4318, Fax: +852 2866-9022/9044

Renesas Electronics Taiwan Co., Ltd.
13F, No. 363, Fu Shing North Road, Taipei, Taiwan
Tel: +886-2-8755-9000, Fax: +886-2-8755-9670

Renesas Electronics Singapore Pte. Ltd.
1 Hartford North Avenue #10-10, Keppel Bay Tower, Singapore 098932
Tel: +65-6213-0200, Fax: +65-6278-8001

Renesas Electronics Malaysia Sdn. Bhd.
Unit 906, Block B, Menara Aman, Ampang Trade Centre, No. 18, Jln Persiaran Barat, 46500 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-2-7355-9300, Fax: +60-2-7355-9515

Renesas Electronics Korea Co., Ltd.
11F, Samil Lavied’ or Bldg., 720-2 Yujipyeung-Dong, Kangnam-Ku, Seoul 135-080, Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5141

© 2011 Renesas Electronics Corporation. All rights reserved.
Colophon 1.1