1. **Abstract**
 This document describes an application example for using the voltage detector. The sample code shows how to detect the rise or fall of VCC1 input voltage using the voltage detector.

2. **Introduction**
 The application example described in this document applies to the following microcomputer (MCU):

 - MCU: M16C/63 Group

 When using this application note with other Renesas MCUs, careful evaluation is recommended after making modifications to comply with the alternate MCU.

 The sample code operates under following conditions.
 - XIN frequency: 8 MHz
 - Message transmission
 Channel: UART1
 - Communication settings
 - Baud rate: 38400 bps
 - Data length: 8 bits
 - Parity: None
 - Stop bit: 1 bit
 - Flow control: None

 Depending on the MCU used, the surrounding temperature, and other variables, characteristics for the voltage detector such as the detection voltage and detection time will vary within the range listed in the Electrical Characteristics chapter of the User's Manual: Hardware. The settings described in this document are examples used only for reference. The variation in the electrical characteristics should be considered when designing your system. Refer to the User’s Manual: Hardware for details on electrical characteristics.
3. Application Example

3.1 Overview

In this sample code, the voltage of VCC1 is checked every 10 ms after the power-on reset. When VCC1 is equal to or above Vdet2 ten times consecutively (i.e. VCC1 ≥ Vdet2 for 100 ms), the program determines that the VCC1 voltage is stable at or above Vdet2.

When VCC1 is equal to or above Vdet2 after the power-on reset.
 (1) Configure the voltage monitor interrupt.
 (2) Transmit the message “Start” to the personal computer (hereinafter referred to as PC), and perform normal operation.

When VCC1 is equal to or below Vdet2 after the power-on reset.
 (1) Invert the alarm port every 1 second. (1)
 (2) Transmit the message “Please set 5.0V” to the PC.

When a rise or a fall is detected in the VCC1 voltage, an interrupt occurs. Read the VW2C2 bit in the VW2C register and the VW1C2 bit in the VW1C register in the interrupt handler, then determine whether the source is the voltage monitor 2 interrupt or voltage monitor 1 interrupt. The digital filter is not used here.

 (1) Normal operation (when voltage is stable)
 Every 0.5 seconds, the count port value is incremented and then output. (1)
 (2) Operation when the voltage monitor 2 interrupt occurs
 When VCC1 is equal to or below Vdet2 and the voltage monitor 2 interrupt occurs:
 • Transmit the message “Under Vdet2” to the PC.
 • Change the condition for the voltage monitor 2 interrupt to “VCC1 ≥ Vdet2”.
 When VCC1 is equal to or above Vdet2 and the voltage monitor 2 interrupt occurs:
 • Transmit the message “Over Vdet2” to the PC.
 • Change the condition for the voltage monitor 2 interrupt to “VCC1 ≤ Vdet2”.
 (3) Operation when the voltage monitor 1 interrupt occurs
 When VCC1 is equal to or below Vdet1 and the voltage monitor 1 interrupt occurs:
 • Transmit the message “Under Vdet1” to the PC.
 • Change the condition for the voltage monitor 1 interrupt to “VCC1 ≥ Vdet1”.
 When VCC1 is equal to or above Vdet1 and the voltage monitor 1 interrupt occurs:
 • Transmit the message “Over Vdet1” to the PC.
 • Change the condition for the voltage monitor 1 interrupt to “VCC1 ≤ Vdet1”.
 (4) Operation when the voltage monitor 0 reset occurs
 Reset is executed.

Note:
 1. Count ports: P4_0 to P4_2
 Alarm port: P4_3
3.2 Circuit Example

Figure 3.1 shows the Power-On Reset Circuit.

![Power-On Reset Circuit](image)

3.3 Operation

Table 3.1 lists the operations when the voltage transitions as shown in Figure 3.2.

<table>
<thead>
<tr>
<th>Operation</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) Power-on reset</td>
<td>When VCC1 is equal to or above Vdet0.</td>
</tr>
<tr>
<td>(2) Start incrementing the count port. Transmit the message “Start” to the PC.</td>
<td>VCC1 is equal to or above Vdet2 for 100 ms.</td>
</tr>
<tr>
<td>(3) Transmit the message “Under Vdet2” to the PC. Change the VW2C7 bit to 0 (when VCC1 is equal to or above Vdet2).</td>
<td>VCC1 passed downward through Vdet2.</td>
</tr>
<tr>
<td>(4) Transmit the message “Under Vdet1” to the PC. Change the VW1C7 bit to 0 (when VCC1 is equal to or above Vdet1).</td>
<td>VCC1 passed downward through Vdet1.</td>
</tr>
<tr>
<td>(5) Transmit the message “Over Vdet1” to the PC. Change the VW1C7 bit to 1 (when VCC1 is equal to or below Vdet1).</td>
<td>VCC1 passed upward through Vdet1.</td>
</tr>
<tr>
<td>(6) Transmit the message “Over Vdet2” to the PC. Change the VW2C7 bit to 1 (when VCC1 is equal to or below Vdet2).</td>
<td>VCC1 passed upward through Vdet2.</td>
</tr>
<tr>
<td>(7) Voltage monitor 0 reset</td>
<td>VCC1 is below Vdet0.</td>
</tr>
<tr>
<td>(8), (9) Invert the alarm port in 1 second intervals and transmit the message “Please set 5.0V” to the PC.</td>
<td>VCC1 is equal to or above Vdet0, and below Vdet2.</td>
</tr>
<tr>
<td>(10) Start incrementing a count port. Transmit the message “Start” to the PC.</td>
<td>VCC1 is equal to or above Vdet2 for 100 ms.</td>
</tr>
</tbody>
</table>
3.4 Determining When VCC1 ≥ Vdet2

Figure 3.3 shows how to read the VC13 bit in the VCR1 register to determine whether VCC1 is equal to or above Vdet2.
3.5 Determining the Voltage Monitor Interrupt Source

Read the voltage change detection flag in the interrupt handler to determine whether the source is the voltage monitor 1 interrupt or voltage monitor 2 interrupt. Chattering check is not performed here. Figure 3.4 shows a flowchart for determining the voltage monitor interrupt source.

![Flowchart](image-url)
4. Setting Procedures

4.1 Setting Optional Function Select Address 1 (OFS1)

Enabling and disabling the voltage monitor 0 reset after hardware reset can be selected by setting the LVDAS bit in the OFS1 address. In this sample code, the voltage monitor 0 reset is enabled after hardware reset.

The OFS1 address is assigned to address FFFFFh in the M16C/63 Group. Refer to User’s Manual: Hardware for the OFS1 address setting values.

Table 4.1 shows script examples for enabling the voltage monitor 0 reset after hardware reset in the M16C/63 Group.

<table>
<thead>
<tr>
<th>Tool Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Script in C language</td>
<td>.asm(“.ofsreg 09Fh”);</td>
</tr>
<tr>
<td>Script in assembly language</td>
<td>.ofsreg 09Fh</td>
</tr>
</tbody>
</table>

4.2 Procedure for Setting Voltage Monitor Related Bits

Table 4.2 shows Procedure for Setting Voltage Monitor 0 Reset Related Bits. Table 4.3 shows Procedure for Setting Voltage Monitor 1 Interrupt/Reset Related Bits. Table 4.4 shows Procedure for Setting Voltage Monitor 2 Interrupt/Reset Related Bits.

Table 4.2 Procedure for Setting Voltage Monitor 0 Reset Related Bits

<table>
<thead>
<tr>
<th>Step</th>
<th>Processing</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Set the VC25 bit in the VCR2 register to 1 (voltage detector 0 enabled).</td>
</tr>
<tr>
<td>2</td>
<td>Wait for td(E-A).</td>
</tr>
<tr>
<td>3</td>
<td>Set the VW0C0 bit in the VW0C register to 1 (voltage monitor 0 reset enabled).</td>
</tr>
</tbody>
</table>
Table 4.3 Procedure for Setting Voltage Monitor 1 Interrupt/Reset Related Bits

<table>
<thead>
<tr>
<th>Step</th>
<th>When Using the Digital Filter</th>
<th>When Not Using the Digital Filter</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Voltage monitor 1 interrupt</td>
<td>Voltage monitor 1 reset</td>
</tr>
<tr>
<td></td>
<td>Voltage monitor 1 reset</td>
<td>Voltage monitor 1 interrupt</td>
</tr>
<tr>
<td></td>
<td>Voltage monitor 1 reset</td>
<td>Voltage monitor 1 reset</td>
</tr>
<tr>
<td>1</td>
<td>Set the VW12E bit in the VWCE register to 1 (voltage monitors 1 and 2 enabled).</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Set bits VD1LS3 to VD1LS0 in the VD1LS register to select Vdet1.</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Set the VC26 bit in the VCR2 register to 1 (voltage detector 1 enabled).</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Wait for td(E-A).</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Use bits VW1F1 and VW1F0 in the VW1C register to select the digital filter sampling clock.</td>
<td>Use the VW1C7 bit in the VW1C register to select the timing of the interrupt and reset request. (1)</td>
</tr>
<tr>
<td>6 (2)</td>
<td>Set the VW1C1 bit in the VW1C register to 0 (digital filter enabled).</td>
<td>Set the VW1C1 bit in the VW1C register to 1 (digital filter disabled).</td>
</tr>
<tr>
<td>7 (2)</td>
<td>Set the VW1C6 bit in the VW1C register to 0 (voltage monitor 1 interrupt).</td>
<td>Set the VW1C6 bit in the VW1C register to 1 (voltage monitor 1 reset).</td>
</tr>
<tr>
<td></td>
<td>Set the VW1C7 bit in the VW1C register to 0 (voltage monitor 1 reset).</td>
<td>Set the VW1C6 bit in the VW1C register to 0 (voltage monitor 1 interrupt).</td>
</tr>
<tr>
<td>8</td>
<td>Set the VW1C2 bit in the VW1C register to 0 (Vdet1 passage not detected).</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Set the CM14 bit in the CM1 register to 0 (125 kHz on-chip oscillator on)</td>
<td>-</td>
</tr>
<tr>
<td>10</td>
<td>Wait for digital filter sampling clock × 3 cycles.</td>
<td>- (no wait time)</td>
</tr>
<tr>
<td>11</td>
<td>Set the VW1C0 bit in the VW1C register to 1 (voltage monitor 1 interrupt/reset enabled).</td>
<td></td>
</tr>
</tbody>
</table>

Notes:

1. Set the VW1C7 bit to 1 for the voltage monitor 1 reset (when VCC1 reaches or goes below Vdet1).
2. When the VW1C0 bit is 0, steps 5, 6, and 7 can be executed simultaneously (with one instruction).
3. If the above setting is performed while the voltage monitor 1 interrupt/reset is disabled (VW1C0 bit in the VW1C register is 0, VC26 bit in the VCR2 register is 0), and VCC1 < Vdet1 (or VCC1 > Vdet1) is detected before enabling the voltage monitor 1 interrupt/reset (step 11), an interrupt does not occur. When VCC1 < Vdet1 (or VCC1 > Vdet1) is detected while executing steps 9 to 11, the VW1C2 bit becomes 1.

When using the detection results from steps 9 to 11, read the VW1C2 bit after step 11. If the bit is 1, execute the process to be performed after detecting VCC1 < Vdet1 (or VCC1 > Vdet1).

When ignoring the detection results from steps 9 to 11, set the VW1C2 bit to 0 after step 11.
Table 4.4 Procedure for Setting Voltage Monitor 2 Interrupt/Reset Related Bits

<table>
<thead>
<tr>
<th>Step</th>
<th>When Using the Digital Filter</th>
<th>When Not Using the Digital Filter</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Voltage monitor 2 interrupt</td>
<td>Voltage monitor 2 reset</td>
</tr>
<tr>
<td>1</td>
<td>Set the VW12E bit in the VWCE register to 1 (voltage monitors 1 and 2 enabled).</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Set the VC27 bit in the VCR2 register to 1 (voltage detector 2 enabled).</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Wait for td(E-A).</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Set bits VW2F0 to VW2F1 in the VW2C register to select the digital filter sampling clock.</td>
<td>Set the VW2C7 bit in the VW2C register to select the timing of the interrupt and reset request. (1)</td>
</tr>
<tr>
<td>5 (2)</td>
<td>Set the VW2C1 bit in the VW2C register to 0 (digital filter enabled).</td>
<td>Set the VW2C1 bit in the VW2C register to 1 (digital filter disabled).</td>
</tr>
<tr>
<td>6 (2)</td>
<td>Set the VW2C6 bit in the VW2C register to 0 (voltage monitor 2 interrupt).</td>
<td>Set the VW2C6 bit in the VW2C register to 1 (voltage monitor 2 reset).</td>
</tr>
<tr>
<td>7</td>
<td>Set the VW2C2 bit in the VW2C register to 0 (Vdet2 passage not detected).</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Set the CM14 bit in the CM1 register to 0 (125 kHz on-chip oscillator on)</td>
<td>-</td>
</tr>
<tr>
<td>9</td>
<td>Wait for digital filter sampling clock × 3 cycles.</td>
<td>- (no wait time)</td>
</tr>
<tr>
<td>10</td>
<td>Set the VW2C0 bit in the VW2C register to 1 (voltage monitor 2 interrupt/reset enabled).</td>
<td></td>
</tr>
</tbody>
</table>

Notes:

1. Set the VW2C7 bit to 1 for the voltage monitor 2 reset (when VCC1 reaches or goes below Vdet2).
2. When the VW2C0 bit is 0, steps 4, 5, and 6 can be executed simultaneously (with one instruction).
3. If the above settings are performed while the voltage monitor 2 interrupt/reset is disabled (VW2C0 bit in the VW2C register is 0, VC27 bit in the VCR2 register is 0), and VCC1 < VDET2 (or VCC1 > Vdet2) is detected before enabling the voltage monitor 2 interrupt/reset (step 10), an interrupt is not generated. When VCC1 < VDET2 (or VCC1 > Vdet2) is detected while executing steps 8 to 10, the VW2C2 bit becomes 1.

When using the detection results from steps 8 to 10, read the VW2C2 bit after step 10. If the bit is 1, execute the process to be performed after detecting VCC1 < VDET2 (or VCC1 > Vdet2).

When ignoring the detection results from steps 8 to 10, set the VW2C2 bit to 0 after step 10.
5. Setting Method

The setting procedures and values in this chapter are used to achieve the example described in 3. “Application Example”. Refer to the User’s Manual: Hardware for details on registers.

5.1 Setting Optional Function Select Address 1 (OFS1)

Figure 5.1 shows Setting Optional Function Select Address 1 (OFS1).

Optional function select address 1 (OFS1)

<table>
<thead>
<tr>
<th>b7</th>
<th>b6</th>
<th>b5</th>
<th>b4</th>
<th>b3</th>
<th>b2</th>
<th>b1</th>
<th>b0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

- **WDTON** Watchdog timer start select bit
 - 0: Watchdog timer starts automatically after reset
 - 1: Watchdog timer is stopped after reset

- **ROMCR** ROM code protect cancel bit
 - 0: ROM code protection cancelled
 - 1: ROMCP1 bit enabled

- **ROMCP1** ROM code protect bit
 - 0: ROM code protection enabled
 - 1: ROM code protection disabled

- **VDSEL1** Vdet0 select bit 1
 - 0: Vdet0_2
 - 1: Vdet0_0

- **LVDAS** Voltage detector 0 start bit
 - 0: Voltage monitor 0 reset enabled after hardware reset
 - 1: Voltage monitor 0 reset disabled after hardware reset

- **CSPROINI** After-reset count source protection mode select bit
 - 0: Count source protection mode enabled after reset
 - 1: Count source protection mode disabled after reset

OFS1 address is on the flash memory (address FFFFFFFh). Write to this address when writing a program to the flash memory. When erasing the block which includes the OFS1 address, the value of the OFS1 address becomes FFh.
5.2 Setting Registers Associated with Voltage Detectors

Figure 5.2 to Figure 5.5 show register settings associated with voltage detectors.

<table>
<thead>
<tr>
<th>Setting voltage detector 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protect register (PRCR)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>b7</td>
</tr>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Voltage detector operation enable register (VCR2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VC25 Voltage detector 0 enable bit</td>
</tr>
<tr>
<td>1: Voltage detector 0 enabled</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>b7</td>
</tr>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Voltage monitor 0 control register (VW0C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VW0C0 Voltage monitor 0 reset enable bit</td>
</tr>
<tr>
<td>1: Enabled</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>b7</td>
</tr>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Protect register (PRCR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRC3 Protect bit 3</td>
</tr>
<tr>
<td>Enable writing to registers VCR2, VWCE, VD1LS, VW0C, VW1C, and VW2C</td>
</tr>
<tr>
<td>1: Write enabled</td>
</tr>
</tbody>
</table>

The detector operates when td(E-A) elapses after the VC25 bit is set to 1. Wait for td(E-A).

Figure 5.2 Setting Registers Associated with Voltage Monitor 0
Setting voltage detector 1

Protect register (PRCR)

```
0 0 0 0 0 1
```

PRC3 Protect bit 3
Enable writing to registers VCR2, VWCE, VD1LS, VW0C, VW1C, and VW2C
1: Write enabled

Voltage monitor function select register (VWCE)

```
0 0 0 0 0 1
```

VW12E Voltage monitors 1 and 2 enable bit
1: Voltage monitors 1 and 2 enabled
Only set the values listed above.

Voltage detector 1 level select register (VD1LS)

```
0 0 0 0 1 1 0
```

VD1LS3 to VD1LS0 Vdet1 select bit
0000: Vdet1_0
0110: Vdet1_6
1011: Vdet1_B
1111: Vdet1_F
Only set the values listed above.

Voltage detector operation enable register (VCR2)

```
1 1 1 1 1 1 1
```

VC26 Voltage detector 1 enable bit
1: Voltage detector 1 enabled
The detector operates when td(E-A) elapses after the VC26 bit is set to 1. Wait for td(E-A).

Continued on next page
Continued from previous page

Setting voltage detector 1

When using the digital filter, select the sampling clock for the digital filter.

Figure 5.4 Setting Registers Associated with Voltage Monitor 1 (2/2)
Setting voltage detector 2

<table>
<thead>
<tr>
<th>Bit 7</th>
<th>Bit 6</th>
<th>Bit 5</th>
<th>Bit 4</th>
<th>Bit 3</th>
<th>Bit 2</th>
<th>Bit 1</th>
<th>Bit 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

Protect register (PRCR)

- **PRC3**
 - Bit 3
 - Enable writing to registers VCR2, VWCE, VD1LS, VW0C, VW1C, and VW2C
 - 1: Write enabled

<table>
<thead>
<tr>
<th>Bit 7</th>
<th>Bit 6</th>
<th>Bit 5</th>
<th>Bit 4</th>
<th>Bit 3</th>
<th>Bit 2</th>
<th>Bit 1</th>
<th>Bit 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Voltage monitor function select register (VWCE)

- **VW12E** Voltage monitors 1 and 2 enable bit
 - 1: Voltage monitors 1 and 2 enabled

<table>
<thead>
<tr>
<th>Bit 7</th>
<th>Bit 6</th>
<th>Bit 5</th>
<th>Bit 4</th>
<th>Bit 3</th>
<th>Bit 2</th>
<th>Bit 1</th>
<th>Bit 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>

Voltage detector operation enable register (VCR2)

- **VC27** Voltage detector 2 enable bit
 - 1: Voltage detector 2 enabled

<table>
<thead>
<tr>
<th>Bit 7</th>
<th>Bit 6</th>
<th>Bit 5</th>
<th>Bit 4</th>
<th>Bit 3</th>
<th>Bit 2</th>
<th>Bit 1</th>
<th>Bit 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

Voltage monitor 2 control register (VW2C)

- **VW2C6** Voltage monitor 2 mode select bit
 - 0: Voltage monitor 2 interrupt at Vdet2 passage
 - 1: Voltage monitor 2 reset at Vdet2 passage

<table>
<thead>
<tr>
<th>Bit 7</th>
<th>Bit 6</th>
<th>Bit 5</th>
<th>Bit 4</th>
<th>Bit 3</th>
<th>Bit 2</th>
<th>Bit 1</th>
<th>Bit 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

Voltage monitor 2 control register (VW2C)

- **VW2C0** Voltage monitor 2 interrupt/reset enable bit
 - 1: Enabled

<table>
<thead>
<tr>
<th>Bit 7</th>
<th>Bit 6</th>
<th>Bit 5</th>
<th>Bit 4</th>
<th>Bit 3</th>
<th>Bit 2</th>
<th>Bit 1</th>
<th>Bit 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>

Protect register (PRCR)

- **PRC3**
 - Bit 3
 - Enable writing to registers VCR2, VWCE, VD1LS, VW0C, VW1C, and VW2C
 - 1: Write enabled

The detector operates when \(t_{d(E-A)} \) elapses after the VC27 bit is set to 1. Wait for \(t_{d(E-A)} \).

When using the digital filter, select the sampling clock for the digital filter.

When using the digital filter, set this bit to 0 (digital filter enabled).

When using the digital filter, add processes here to set the CM14 bit in the CM1 register to 0 (125 kHz on-chip oscillator on), and wait for 3 cycles of the sampling clock for the digital filter.

Figure 5.5 Setting Registers Associated with Voltage Monitor 2
5.3 Interrupt Handling and Register Setting

Figure 5.6 and Figure 5.7 show interrupt handling and register setting.

(1) Disable write protection

<table>
<thead>
<tr>
<th>Protect register (PRCR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

Protect bit 3
Enable writing to registers VCR2, VWCE, VD1LS, VW0C, VW1C, and VW2C
1: Write enabled

(2) Vdet2 passage

When passed downward through Vdet2

1. Change the conditions to generate the voltage monitor 2 interrupt.

<table>
<thead>
<tr>
<th>Voltage monitor 2 control register (VW2C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
</tbody>
</table>

VW2C0 Voltage monitor 2 interrupt/reset enable bit
0: Disabled

<table>
<thead>
<tr>
<th>Voltage monitor 2 control register (VW2C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
</tbody>
</table>

VW2C7 Voltage monitor 2 interrupt/reset generation condition select bit
0: When VCC1 reaches or goes above Vdet2

<table>
<thead>
<tr>
<th>Voltage monitor 2 control register (VW2C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
</tbody>
</table>

VW2C2 Voltage change detection flag
0: Not detected

<table>
<thead>
<tr>
<th>Voltage monitor 2 control register (VW2C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

VW2C0 Voltage monitor 2 interrupt/reset enable bit
1: Enabled

2. Transmit the message “Under Vdet2” to the PC.

When passed upward through Vdet2

1. Change the conditions to generate the voltage monitor 2 interrupt.

<table>
<thead>
<tr>
<th>Voltage monitor 2 control register (VW2C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
</tbody>
</table>

VW2C0 Voltage monitor 2 interrupt/reset enable bit
0: Disabled

<table>
<thead>
<tr>
<th>Voltage monitor 2 control register (VW2C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

VW2C7 Voltage monitor 2 interrupt/reset generation condition select bit
1: When VCC1 reaches or goes below Vdet2

<table>
<thead>
<tr>
<th>Voltage monitor 2 control register (VW2C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
</tbody>
</table>

VW2C2 Voltage change detection flag
0: Not detected

<table>
<thead>
<tr>
<th>Voltage monitor 2 control register (VW2C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

VW2C0 Voltage monitor 2 interrupt/reset enable bit
1: Enabled

2. Transmit the message “Over Vdet2” to the PC.

Figure 5.6 Interrupt Handling and Register Setting (1/2)
(3) Vdet1 passage

When passed downward through Vdet1

1. Change the conditions to generate the voltage monitor 1 interrupt.

```
  b7 b6 b5 b4 b3 b2 b1 b0
Voltage monitor 1 control register
(VW1C)
VW1C0 Voltage monitor 1 interrupt/reset enable bit
  0: Disabled
VW1C7 Voltage monitor 1 interrupt/reset generation condition select bit
  0: When VCC1 reaches or goes above Vdet1
VW1C2 Voltage change detection flag
  0: Not detected
VW1C0 Voltage monitor 1 interrupt/reset enable bit
  1: Enabled
```

1. Transmit the message “Under Vdet1” to the PC.

When passed upward through Vdet1

1. Change the conditions to generate the voltage monitor 1 interrupt.

```
  b7 b6 b5 b4 b3 b2 b1 b0
Voltage monitor 1 control register
(VW1C)
VW1C0 Voltage monitor 1 interrupt/reset enable bit
  0: Disabled
VW1C7 Voltage monitor 1 interrupt/reset generation condition select bit
  1: When VCC1 reaches or goes below Vdet1
VW1C2 Voltage change detection flag
  0: Not detected
VW1C0 Voltage monitor 1 interrupt/reset enable bit
  1: Enabled
```

2. Transmit the message “Over Vdet1” to the PC.

(4) Enable write protection

```
  b7 b6 b5 b4 b3 b2 b1 b0
Protect register (PRCR)
PRC3 Protect bit 3
  Enable writing to registers VCR2, VWCE, VD1LS, VW0C, VW1C, and VW2C
  0: Write protected
```
6. Sample Code
Sample code can be downloaded from the Renesas Electronics website.

7. Reference Documents
M16C/63 Group User’s Manual: Hardware Rev. 2.00
The latest version can be downloaded from the Renesas Electronics website.

Technical Update/Technical News
The latest information can be downloaded from the Renesas Electronics website.

C Compiler Manual
M16C Series/R8C Family C Compiler Package V.5.45
C Compiler User’s Manual Rev.2.00
The latest version can be downloaded from the Renesas Electronics website.

Website and Support
Renesas Electronics website
http://www.renesas.com/

Inquiries
http://www.renesas.com/inquiry
<table>
<thead>
<tr>
<th>Rev.</th>
<th>Date</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00</td>
<td>Sep. 30, 2011</td>
<td>First edition issued</td>
</tr>
</tbody>
</table>
General Precautions in the Handling of MPU/MCU Products

The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the products covered by this manual, refer to the relevant sections of the manual. If the descriptions under General Precautions in the Handling of MPU/MCU Products and in the body of the manual differ from each other, the description in the body of the manual takes precedence.

1. Handling of Unused Pins
 Handle unused pins in accord with the directions given under Handling of Unused Pins in the manual.
 - The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible. Unused pins should be handled as described under Handling of Unused Pins in the manual.

2. Processing at Power-on
 The state of the product is undefined at the moment when power is supplied.
 - The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the moment when power is supplied. In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the moment when power is supplied until the reset process is completed.
 - In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the moment when power is supplied until the power reaches the level at which resetting has been specified.

3. Prohibition of Access to Reserved Addresses
 Access to reserved addresses is prohibited.
 - The reserved addresses are provided for the possible future expansion of functions. Do not access these addresses; the correct operation of LSI is not guaranteed if they are accessed.

4. Clock Signals
 After applying a reset, only release the reset line after the operating clock signal has become stable. When switching the clock signal during program execution, wait until the target clock signal has stabilized.
 - When the clock signal is generated with an external resonator (or from an external oscillator) during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Moreover, when switching to a clock signal produced with an external resonator (or by an external oscillator) while program execution is in progress, wait until the target clock signal is stable.

5. Differences between Products
 Before changing from one product to another, i.e. to one with a different part number, confirm that the change will not lead to problems.
 - The characteristics of MPU/MCU in the same group but having different part numbers may differ because of the differences in internal memory capacity and layout pattern. When changing to products of different part numbers, implement a system-evaluation test for each of the products.
Notice

1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our websites.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.

4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depend on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product in an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheet or data book, etc.

 (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

 (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified range.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.

Refer to “http://www.renesas.com/” for the latest and detailed information.

Renesas Electronics America Inc.,
2880 Scott Boulevard, Santa Clara, CA 95050-2554, U.S.A.
Tel: +1-408-588-6000, Fax: +1-408-588-6130

Renesas Electronics Canada Limited
1701 McNicol Road, Newmarket, Ontario L3Y 9C3, Canada
Tel: +1-905-898-5441, Fax: +1-905-898-3202

Renesas Electronics Europe Limited
Dukes Meadow, Millbrook Road, Bovingdon, Buckinghamshire, SL8 5PH, U.K
Tel: +44-1428-586-100, Fax: +44-1428-586-900

Renesas Electronics Europe GmbH
Ackerstrasse 10, 40472 Düsseldorf, Germany
Tel: +49-211-6650-0, Fax: +49-211-6503-1327

Renesas Electronics (China) Co., Ltd.
29 Tai Ping Quanyuan Plaza, No.27 Zhenhai Lu, Haiyin District, Beijing 100083, P.R.China
Tel: +86-10-6230-1155, Fax: +86-10-6230-7979

Renesas Electronics (Shanghai) Co., Ltd.
Unit 204, 205, AZIA Center, No.1233 Lujiazui Ring Rd., Pudong District, Shanghai 200120, China
Tel: +86-21-6887-7868 / -7898

Renesas Electronics Hong Kong Limited
Unit 1901-1913, 19/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2886-4136, Fax: +852-2886-9202/9494

Renesas Electronics Taiwan Co., Ltd.
13F, No. 363, Fu Shing North Road, Taipei, Taiwan
Tel: +886-2-8175-9600, Fax: +886-2-8175-9670

Renesas Electronics Singapore Pte. Ltd.
1 Harbourfront Avenue, #10-10, Keppel Bay Tower, Singapore 098632
Tel: +65-6213-0200, Fax: +65-6278-8001

Renesas Electronics Malaysia Sdn. Bhd.
Unit 908, Block E, Menara Aman, Ampang Trade Centre, No. 18, Jln Persiaran Barat, 46500 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-2352-9390, Fax: +60-3-2352-9510

Renesas Electronics Korea Co., Ltd.
11F., Samillavado e-Wiz, 730-2, Yujipsam-dong, Kangnam-ku, Seoul 135-080, Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5141