1. Abstract

This document describes procedures for the following mode transitions, and setting and canceling low current consumption read mode in the M16C/63 Group:

- Transition from high-speed mode to low-speed mode
- Transition from low-speed mode to high-speed mode
- Transition from low-speed mode to low power mode
- Transition from low power mode to low-speed mode
- Setting and canceling low current consumption read mode

2. Introduction

The application example described in this document applies to the following microcomputer (MCU):

- MCU: M16C/63 Group

This application note can be used with other M16C Family MCUs which have the same special function registers (SFRs) as the above group. Check the manual for any modifications to functions. Careful evaluation is recommended before using the sample code described in this application note.
3. Clock Mode Transition Procedure

Figure 3.1 shows the transition procedure between high-speed mode and low power mode. Figure 3.2 to Figure 3.5 show transition procedures for each mode. Figure 3.6 shows the procedure for setting and canceling low current consumption read mode.

Wait time until the main clock oscillation or sub clock oscillation stabilizes varies depending on the oscillation circuit used. Use the wait time recommended by the crystal unit manufacturer.

![Diagram](image-url)
Transition from High-Speed Mode to Low-Speed Mode

1. Disabling write protection
2. Setting P8_6 and P8_7 to 0 (not pulled high)
3. Setting P8_6 and P8_7 as input ports
4. Selecting XCIN-XCOUT oscillation function
5. Starting oscillating the XCIN clock
6. Waiting until the sub clock stabilizes
7. Selecting sub clock division ratio
8. Switching the main clock to the sub clock
9. Enabling write protection

Transition from Low-Speed Mode to Low Power Mode

1. Disabling write protection
2. Disabling oscillation stop/restart detect function
3. Stopping the main clock
4. Enabling write protection
Transition from low power mode to low-speed mode

1. Disable write protection
2. Set XIN-XOUT drive capacity to high
3. Start oscillating the main clock
4. Wait until the main clock stabilizes
5. Enable write protection

Figure 3.4 Transition Procedure from Low Power Mode to Low-Speed Mode

Transition from low-speed mode to high-speed mode

1. Disable write protection
2. Set XIN-XOUT drive capacity to high
3. Start oscillating the main clock
4. Wait until the main clock stabilizes
5. Switch to divide-by-8 mode
6. Set to main clock
7. Switch the sub clock to the main clock
8. Enable bits CM16 and CM17 in the CM1 register
9. Switch to no division mode
10. Enable write protection

Figure 3.5 Transition Procedure from Low-Speed Mode to High-Speed Mode
Low current consumption read mode can be used when the CM07 bit in the CM0 register is 1 (sub clock used as CPU clock).

Figure 3.6 Setting and Canceling Low Current Consumption Read Mode

- **Low current consumption read mode**
- **Setting procedure**
 - Set the CM07 bit to 1 (sub clock used as a CPU clock)
 - Set the CM05 bit to 1 (main clock oscillator stop)
 - Set the FMR22 bit to 0 and then to 1 (slow read mode enabled) \(^{(1)}\)
 - Set the FMR23 bit to 0 and then to 1 (low current consumption read mode enabled) \(^{(1)}\)
 - Processing in low current consumption read mode
- **Canceling procedure**
 - Set the FMR23 bit to 0 \(^{(1)}\)
 - Set the FMR22 bit to 0 \(^{(1)}\)
 - Completed

Note:
1. Do not rewrite bits FMR22 and FMR23 simultaneously.
4. Sample Code

A sample code can be downloaded from the Renesas Electronics website. To download, click “Application Notes” in the left-hand side menu of the M16C Family page.

4.1 Sample Code Operation

The sample code executes functions (1) to (7) below in order. Refer to 4.2 Function Tables for details of each function.

1. CPU initialization
2. Transition from 125 kHz on-chip oscillator mode to high-speed mode
3. Transition from high-speed mode to low-speed mode
4. Transition from low-speed mode to low power mode
5. Setting and canceling low current consumption read mode
6. Transition from low power mode to low-speed mode
7. Transition from low-speed mode to high-speed mode

The settings in the sample code are as follows: Wait time until the main clock stabilizes is approximately 100 ms when the CPU clock is 32.768 kHz, and wait time until the sub clock stabilizes is approximately 1 sec. when the CPU clock is 4 MHz.

4.2 Function Tables

Function Tables for This Document

<table>
<thead>
<tr>
<th>Declaration</th>
<th>void lows_speed_from_highspeed(void)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outline</td>
<td>Transition from high-speed mode to low-speed mode</td>
</tr>
<tr>
<td>Argument</td>
<td>None</td>
</tr>
<tr>
<td>Variable</td>
<td>None</td>
</tr>
<tr>
<td>Returned value</td>
<td>None</td>
</tr>
<tr>
<td>Function</td>
<td>Switch the CPU clock from high-speed mode to low-speed mode.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Declaration</th>
<th>void highspeed_from_lowspeed(void)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outline</td>
<td>Transition from low-speed mode to high-speed mode</td>
</tr>
<tr>
<td>Argument</td>
<td>None</td>
</tr>
<tr>
<td>Variable</td>
<td>None</td>
</tr>
<tr>
<td>Returned value</td>
<td>None</td>
</tr>
<tr>
<td>Function</td>
<td>Switch the CPU clock from low-speed mode to high-speed mode.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Declaration</th>
<th>void lowpower_from_lowspeed(void)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outline</td>
<td>Transition from low-speed mode to low power mode</td>
</tr>
<tr>
<td>Argument</td>
<td>None</td>
</tr>
<tr>
<td>Variable</td>
<td>None</td>
</tr>
<tr>
<td>Returned value</td>
<td>None</td>
</tr>
<tr>
<td>Function</td>
<td>Switch the CPU clock from low-speed mode to low power mode.</td>
</tr>
</tbody>
</table>
Declaration

void lowspeed_from_lowpower(void)

Outline
Transition from low power mode to low-speed mode

Argument
None

Variable
None

Returned value
None

Function
Switch the CPU clock from low power mode to low-speed mode.

Declaration

void low_current_consumption_read_setup(void)

Outline
Setting and canceling low current consumption read mode

Argument
None

Variable
None

Returned value
None

Function
Configure settings for low current consumption read mode, execute low_current_consumption_read(), and cancel low current consumption read mode. This function does not include processes to set the CPU clock to low power mode, or restore the CPU clock. Execute this function after setting the CPU clock to low power mode. Then restore the CPU clock.

Declaration

void low_current_consumption_read(void)

Outline
Processing in low current consumption read mode

Argument
None

Variable
None

Returned value
None

Function
Called from low_current_consumption_read_setup(). Add a program to be processed in low current consumption read mode.

Declaration

void mcu_init(void)

Outline
CPU initialization

Argument
None

Variable
None

Returned value
None

Function
Set to single-chip mode. Switch the CPU clock from 125 kHz on-chip oscillator mode divided-by-8 to 125 kHz on-chip oscillator mode divided-by-1.

Declaration

void highspeed_from_foco125k(void)

Outline
Transition from 125 kHz on-chip oscillator mode to high-speed mode

Argument
None

Variable
None

Returned value
None

Function
Switch the CPU clock from 125 kHz on-chip oscillator mode (fOCO-S divided by 1) to high-speed mode.
5. Reference Documents

M16C/63 Group User’s Manual: Hardware (Hardware Manual) Rev.1.00
The latest version can be downloaded from the Renesas Electronics website.

Technical Update/Technical News
The latest information can be downloaded from the Renesas Electronics website.

M16C Series/R8C Family C Compiler Package V.5.45 C Compiler User Manual Rev.2.00
The latest version can be downloaded from the Renesas Electronics website.

Website and Support

Renesas Electronics website
http://www.renesas.com/

Inquiries
http://www.renesas.com/inquiry
Revision History

<table>
<thead>
<tr>
<th>Rev.</th>
<th>Date</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00</td>
<td>2010.07.01</td>
<td>First edition issued</td>
</tr>
</tbody>
</table>

All trademarks and registered trademarks are the property of their respective owners.
General Precautions in the Handling of MPU/MCU Products

The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the products covered by this manual, refer to the relevant sections of the manual. If the descriptions under General Precautions in the Handling of MPU/MCU Products and in the body of the manual differ from each other, the description in the body of the manual takes precedence.

1. Handling of Unused Pins
 Handle unused pins in accord with the directions given under Handling of Unused Pins in the manual.
 - The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible. Unused pins should be handled as described under Handling of Unused Pins in the manual.

2. Processing at Power-on
 The state of the product is undefined at the moment when power is supplied.
 - The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the moment when power is supplied.
 In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the moment when power is supplied until the reset process is completed.
 In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the moment when power is supplied until the power reaches the level at which resetting has been specified.

3. Prohibition of Access to Reserved Addresses
 Access to reserved addresses is prohibited.
 - The reserved addresses are provided for the possible future expansion of functions. Do not access these addresses; the correct operation of LSI is not guaranteed if they are accessed.

4. Clock Signals
 After applying a reset, only release the reset line after the operating clock signal has become stable. When switching the clock signal during program execution, wait until the target clock signal has stabilized.
 - When the clock signal is generated with an external resonator (or from an external oscillator) during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Moreover, when switching to a clock signal produced with an external resonator (or by an external oscillator) while program execution is in progress, wait until the target clock signal is stable.

5. Differences between Products
 Before changing from one product to another, i.e. to one with a different part number, confirm that the change will not lead to problems.
 - The characteristics of MPU/MCU in the same group but having different part numbers may differ because of the differences in internal memory capacity and layout pattern. When changing to products of different part numbers, implement a system-evaluation test for each of the products.
Notice

1. All information included in this document is as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that described through our websites.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.

4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for the losses incurred by you or third parties arising from the use of these circuits, software, or information.

5. When exporting the product or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and “Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging-degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.

Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.