To our customers,

Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)
Send any inquiries to http://www.renesas.com/inquiry.
Notice

1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.

4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and “Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.

 “Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

 “High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically designed for life support.

 “Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.

(Notice 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

(Notice 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.
M16C/62P and M16C/63, 64, 64A, 65 Groups
Differences in Flash Memory CPU Rewrite Modes

1. Abstract

This document describes differences in flash memory CPU rewrite modes between the M16C/62P Group and M16C/63, 64, 64A and 65 Groups.

2. Introduction

The application example described in this document applies to the following microcomputers (MCUs):

- MCUs: M16C/62P Group
 - M16C/63 Group
 - M16C/64 Group
 - M16C/64A Group
 - M16C/65 Group

This application note can be used with other M16C Family MCUs which have the same special function registers (SFRs) as the above groups. Check the hardware manual for any modifications to functions. Careful evaluation is recommended before using the program described in this application note.
3. Specification Comparison

Table 3.1 lists the differences in the flash memory CPU rewrite modes.

<table>
<thead>
<tr>
<th>Item</th>
<th>M16C/62P Group</th>
<th>M16C/63, 64, 64A and 65 Groups</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flash-related registers</td>
<td>FIDR, FMR0, FMR1</td>
<td>FMR0, FMR1, FMR2, FMR3 (M16C/63 only), FMR6, and PRG2C</td>
</tr>
<tr>
<td>Flash areas</td>
<td>User ROM</td>
<td>Program ROM 1</td>
</tr>
<tr>
<td></td>
<td>Data flash (block A)</td>
<td>Program ROM 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Data flash (block A, block B)</td>
</tr>
<tr>
<td>Registers used and settings in EW0 mode</td>
<td>FMR0 bit (^{1}) is 1</td>
<td>FMR01 bit (^{1}) is 1</td>
</tr>
<tr>
<td></td>
<td>FMR11 bit (^{2}) is 0</td>
<td>FMR11 bit (^{2}) is 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FMR6 register is 02h</td>
</tr>
<tr>
<td>Registers used and settings in EW1 mode</td>
<td>FMR01 bit (^{1}) is 1</td>
<td>FMR01 bit (^{1}) is 1</td>
</tr>
<tr>
<td></td>
<td>FMR11 bit (^{2}) is 1</td>
<td>FMR11 bit (^{2}) is 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FMR6 register is 03h</td>
</tr>
<tr>
<td>Software commands</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Program</td>
<td>In 1-word (2-byte) units</td>
<td>In 2-word (4-byte) units</td>
</tr>
<tr>
<td>Command code</td>
<td>xx40h</td>
<td>xx41h</td>
</tr>
<tr>
<td>Erase all unlocked block</td>
<td>Yes</td>
<td>N/A</td>
</tr>
<tr>
<td>Block blank check</td>
<td>N/A</td>
<td>Yes (FMR05 bit is 1)</td>
</tr>
<tr>
<td>User boot function</td>
<td>N/A</td>
<td>Yes: M16C/63</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N/A: M16C/64, 64A, 65</td>
</tr>
</tbody>
</table>

Notes:
1. The FMR01 bit is bit 1 in the FMR0 register.
2. The FMR11 bit is bit 1 in the FMR1 register.
4. Detailed Comparison

4.1 Flash-related Register Comparison

Table 4.1 lists the differences in the flash memory CPU rewrite modes.

<table>
<thead>
<tr>
<th>Item</th>
<th>M16C/62P Group</th>
<th>M16C/63, 64, 64A and 65 Groups</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flash Memory Control Register 0 (FMR0)</td>
<td>User ROM area select bit (1) 0: Boot ROM area is accessed 1: User ROM area is accessed</td>
<td>Reserved bit Set to 0 when not in user boot mode. Set to 1 in user boot mode.</td>
</tr>
<tr>
<td>Flash Memory Control Register 1 (FMR1)</td>
<td>EW1 mode select bit 0: EW0 mode 1: EW1 mode</td>
<td>Write to FMR6 register enable bit register 0: Disabled 1: Enabled</td>
</tr>
<tr>
<td>Flash Memory Control Register 2 (FMR2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flash Memory Control Register 6 (FMR6)</td>
<td>EW1 mode select bit 0: EW0 mode 1: EW1 mode</td>
<td></td>
</tr>
<tr>
<td>Program 2 Area Control Register (PRG2C)</td>
<td>Program ROM 2 disable bit 0: Enable program ROM 2 1: Disable program ROM 2</td>
<td>Program ROM 1 of addresses (40000h to 7FFFFh) (2) 0: Disabled 1: Enabled</td>
</tr>
</tbody>
</table>

Notes:
1. Only applies when in boot mode.
2. In the M16C/65 Group, only in products with program ROM 1 over 512 KB.
4.2 Memory Map of Flash Memory Area

The memory map of flash memory and its block size differ between the M16C/62P Group and the M16C/63, 64, 64A and 65 Groups.

Table 4.2 lists the differences in memory maps of their flash area. Figure 4.1 shows the comparison of memory maps.

<table>
<thead>
<tr>
<th>Item</th>
<th>M16C/62P Group</th>
<th>M16C/63, 64, 64A and 65 Groups</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data flash</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Block A (4 KB)</td>
<td>0F000h to 0FFFFh</td>
<td>0E000h to 0EFFFh</td>
</tr>
<tr>
<td>Block B (4 KB)</td>
<td>N/A</td>
<td>0F000h to 0FFFFh</td>
</tr>
<tr>
<td>Program ROM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Program ROM 1</td>
<td>080000h to 0FFFFFh (2)</td>
<td>080000h to 0FFFFFh (2)</td>
</tr>
<tr>
<td>Program ROM 2</td>
<td>N/A</td>
<td>010000h to 013FFFh (3)</td>
</tr>
</tbody>
</table>

Notes:
2. Applies to the 512 KB version.
3. Can be used when the PRG2C0 bit in the PRG2C register is 0 (enable program ROM 2).
Figure 4.1 Comparison of Memory Maps (512 KB Version)

M16C/62P Group

<table>
<thead>
<tr>
<th>Block</th>
<th>Address Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>00E000h - 00EFFFh</td>
</tr>
<tr>
<td></td>
<td>Block A: 4 KB</td>
</tr>
<tr>
<td>0</td>
<td>0F0000h - 0F0FFFh</td>
</tr>
<tr>
<td></td>
<td>Block F: 4 KB</td>
</tr>
</tbody>
</table>

M16C/63, 64, 64A, and 65 Groups

<table>
<thead>
<tr>
<th>Block</th>
<th>Address Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>00E000h - 00EFFFh</td>
</tr>
<tr>
<td></td>
<td>Block A: 4 KB</td>
</tr>
<tr>
<td>0</td>
<td>00F000h - 00FFFFh</td>
</tr>
<tr>
<td></td>
<td>Block B: 4 KB</td>
</tr>
<tr>
<td>0</td>
<td>010000h - 013FFFh</td>
</tr>
<tr>
<td></td>
<td>Program ROM 2: 16 KB</td>
</tr>
<tr>
<td>0</td>
<td>013FFFh</td>
</tr>
</tbody>
</table>

Differences in Flash Memory CPU Rewrite Modes

- **Program ROM 1**
 - Block 1: 4 KB
 - Block 2: 8 KB
 - Block 3: 8 KB
 - Block 4: 32 KB

- **Program ROM 2**
 - Block 5: 64 KB
 - Block 6: 64 KB
 - Block 7: 64 KB
 - Block 8: 64 KB

- **Data Flash**
 - Block 9: 64 KB
 - Block 10: 64 KB
 - Block 11: 64 KB
 - Block 12: 64 KB
4.3 Setting and Resetting of CPU Rewrite Mode (EW0, EW1 Mode)

Figure 4.2 shows the Comparison of Setting and Resetting of CPU Rewrite Mode (EW0 Mode). Figure 4.3 shows the Comparison of Setting and Resetting of CPU Rewrite Mode (EW1 Mode).

Figure 4.2 Comparison of Setting and Resetting of CPU Rewrite Mode (EW0 Mode)

M16C/62P Group

1. **Single-chip mode, memory expansion mode or boot mode**
2. **Transfer the rewrite control program to the areas other than flash memory.**
3. **Set registers CM0, CM1 and PM1.**
4. **Jump to the rewrite control program transferred to an area other than the flash memory.**

Rewrite control program

- **In boot mode only**
 - Set the FMR05 bit to 1 (user ROM area accessed).
- **Write 0 and then 1 to the FMR01 bit (CPU rewrite mode enabled).**
- **Execute the software commands.**
- **Execute the read array command.**
- **Set the FMR01 bit to 0 (CPU rewrite mode disabled).**
- **In boot mode only**
 - Set the FMR05 bit to 1 (user ROM area accessed).**
- **Jump to the desired address in the flash memory.**

Notes:

1. In CPU rewrite mode, set the CM06 bit in the CM0 register and bits CM17 to CM16 in the CM1 register to CPU clock frequency of 10.0 MHz or less. Set the PM17 bit in the PM1 register to 1 (wait inserted).
2. Set the FMR01 bit to 1 immediately after setting it to 0. Do not generate an interrupt or a DMA transfer between setting the bit to 0 and setting it to 1.
3. Exit CPU rewrite mode after executing the read array command.
4. When CPU rewrite mode is exited while FMR05 bit is set to 1, the user ROM area can be accessed.
5. When in CPU rewrite mode, bits PM10 and PM13 in the PM1 register are set to 1. The rewrite control program can only be executed in the internal RAM or in an external area that is enabled for use when the PM13 bit = 1. When the PM13 bit = 0 and the flash memory is used in 4M-byte mode, the extended accessible area (40000h to BFFFFh) cannot be used.

Figure 4.3 Comparison of Setting and Resetting of CPU Rewrite Mode (EW1 Mode)

M16C/63, 64, 64A and 65 Groups

1. **Single-chip mode or memory expansion mode**
2. **Transfer the rewrite control program to the areas other than flash memory.**
3. **Set registers CM0, CM1 and PM1.**
4. **Jump to the rewrite control program transferred to an area other than the flash memory.**

Rewrite control program

- **In boot mode only**
 - Set the FMR05 bit to 1 (user ROM area accessed).
- **Write 0 and then 1 to the FMR01 bit (CPU rewrite mode enabled).**
- **Set the FMR11 bit to 1 (FMR6 register write enabled), then set the FMR6 register to 02h (EW0 mode), and then set the FMR11 bit to 0 (FMR6 register write disabled).**
- **Execute the software commands.**
- **Execute the read array command.**
- **Set the FMR01 bit to 0 (CPU rewrite mode disabled).**
- **In boot mode only**
 - Set the FMR05 bit to 1 (user ROM area accessed).**
- **Jump to the desired address in the flash memory.**

Notes:

1. In CPU rewrite mode, set the CM06 bit in the CM0 register and bits CM17 to CM16 in the CM1 register to CPU clock frequency of 10.0 MHz or less. Set the PM17 bit in the PM1 register to 1 (with wait inserted).
2. Set the FMR01 bit to 1 immediately after setting it to 0. Do not generate an interrupt or a DMA transfer between setting the bit to 0 and setting it to 1.
3. Exit CPU rewrite mode after executing the read array command.
4. When in CPU rewrite mode, bits PM10 and PM13 in the PM1 register are set to 1. The rewrite control program can only be executed in the internal RAM or in an external area which can be used when both bits PM10 and PM13 are 1. When the PM13 bit = 0 and the flash memory is used in 4-MB mode, the extended accessible area (40000h to BFFFFh) cannot be used.
M16C/62P and M16C/63, 64, 64A, 65 Groups

Differences in Flash Memory CPU Rewrite Modes

Figure 4.3 Comparison of Setting and Resetting of CPU Rewrite Mode (EW1 Mode)

M16C/62P Group

1. **Single-chip mode**

2. Set the CM0, CM1 and PM1 registers. \(^{(1)}\)

3. Set the FMR01 bit to 1 (CPU rewrite mode enabled) after writing 0.

4. Set the FMR11 bit to 1 (EW1 mode) after writing 0. \(^{(2)}\)

5. Execute the software commands.

6. Set the FMR01 bit to 0 (CPU rewrite mode disabled).

M16C/63, 64, 64A and 65 Groups

1. **Single-chip mode**

2. Set the CM0, CM1 and PM1 registers. \(^{(1)}\)

3. Set the FMR01 bit to 1 (CPU rewrite mode enabled) after writing 0.

4. Set the FMR11 bit to 1 (FMR6 register write enabled), then set the FMR6 register to 03h (EW0 mode), and then set the FMR11 bit to 0 (FMR6 register write disabled).

5. Execute the software commands.

6. Set the FMR01 bit to 0 (CPU rewrite mode disabled).

Notes:

1. In EW1 mode, do not enter memory expansion or boot mode.
2. In CPU rewrite mode, set the CM06 bit in the CM0 register and bits CM17 to CM16 in the CM1 register to CPU clock frequency of 10.0 MHz or less. Set the PM17 bit in the PM1 register to 1 (wait inserted).
3. Set the FMR01 bit to 1 immediately after setting it to 0.
 Do not generate an interrupt or a DMA transfer between setting the bit to 0 and setting it to 1.
 Set the FMR11 bit to 1 immediately after setting it to 0 while the FMR01 bit is set to 1.
 Do not generate an interrupt or a DMA transfer between setting the FMR11 bit to 0 and setting it to 1.
 Set bits FMR01 and FMR11 while “H” is applied to the NMI pin.
4. In EW1 mode, do not enter memory expansion or boot mode.
5. In CPU rewrite mode, set the CM06 bit in the CM0 register and bits CM17 to CM16 in the CM1 register to CPU clock frequency of 10.0 MHz or less. Set the PM17 bit in the PM1 register to 1 (wait inserted).
6. Set the FMR01 bit to 1 immediately after setting it to 0.
 Do not generate an interrupt or a DMA transfer between setting the bit to 0 and setting it to 1.
 Set the FMR11 bit to 1 when the FMR01 bit is set to 1.
4.4 Operation Example

Table 4.3 lists the differences in the software commands.

Table 4.3 Differences in Software Commands

<table>
<thead>
<tr>
<th>Software Command</th>
<th>MCU</th>
<th>The First Bus Cycle</th>
<th>The Second Bus Cycle</th>
<th>The Third Bus Cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Address</td>
<td>Data</td>
<td>Address</td>
</tr>
<tr>
<td>Read array</td>
<td>M16C/62P</td>
<td>x</td>
<td>xxFFh</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>M16C/63, 64, 64A, 65 (1)</td>
<td>x</td>
<td>xxFFh</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>M16C/65 (2)</td>
<td>B0-7</td>
<td>xxFFh</td>
<td>B8</td>
</tr>
<tr>
<td>Read status register</td>
<td>M16C/62P</td>
<td>x</td>
<td>xxFFh</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>M16C/63, 64, 64A, 65 (1)</td>
<td>x</td>
<td>xxFFh</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>M16C/65 (2)</td>
<td>BA</td>
<td>xxFFh</td>
<td>B8</td>
</tr>
<tr>
<td>Clear status register</td>
<td>M16C/62P</td>
<td>x</td>
<td>xxFFh</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>M16C/63, 64, 64A, 65 (1)</td>
<td>x</td>
<td>xxFFh</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>M16C/65 (2)</td>
<td>BA</td>
<td>xxFFh</td>
<td>B8</td>
</tr>
<tr>
<td>Program</td>
<td>M16C/62P</td>
<td>WA</td>
<td>xx40h</td>
<td>WA</td>
</tr>
<tr>
<td></td>
<td>M16C/63, 64, 64A, 65 (1)</td>
<td>WA</td>
<td>xx41h</td>
<td>WA</td>
</tr>
<tr>
<td></td>
<td>M16C/65 (2)</td>
<td>WA</td>
<td>xx41h</td>
<td>WA</td>
</tr>
<tr>
<td>Block erase</td>
<td>M16C/62P</td>
<td>x</td>
<td>xx20h</td>
<td>BA</td>
</tr>
<tr>
<td></td>
<td>M16C/63, 64, 64A, 65 (1)</td>
<td>x</td>
<td>xx20h</td>
<td>BA</td>
</tr>
<tr>
<td></td>
<td>M16C/65 (2)</td>
<td>BA</td>
<td>xx20h</td>
<td>BA</td>
</tr>
<tr>
<td>Erase all unlocked block</td>
<td>M16C/62P</td>
<td>x</td>
<td>xxA7h</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>M16C/63, 64, 64A, 65 (1)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>M16C/65 (2)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Read lock bit status</td>
<td>M16C/62P</td>
<td>x</td>
<td>xx71h</td>
<td>BA</td>
</tr>
<tr>
<td></td>
<td>M16C/63, 64, 64A, 65 (1)</td>
<td>x</td>
<td>xx71h</td>
<td>BA</td>
</tr>
<tr>
<td></td>
<td>M16C/65 (2)</td>
<td>BA</td>
<td>xx71h</td>
<td>BA</td>
</tr>
<tr>
<td>Block blank check</td>
<td>M16C/62P</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>M16C/63, 64, 64A, 65 (1)</td>
<td>x</td>
<td>xx25h</td>
<td>BA</td>
</tr>
<tr>
<td></td>
<td>M16C/65 (2)</td>
<td>BA</td>
<td>xx25h</td>
<td>BA</td>
</tr>
</tbody>
</table>

Notes:
1. In the M16C/65 Group, only in products with program ROM 1 that is 512 KB or less.
2. In the M16C/65 Group, only in products with program ROM 1 over 512 KB.
SRD: Status register data (D7 to D0)
WA: Write address (Even address. Set the end of the address to 0h, 4h, 8h, or Ch in the M16C/63, 64, 64A and 65 Groups).
WD: Write data (16 bits).
WD0: Write data low-order word (16 bits).
WD1: Write data high-order word (16 bits).
BA: Highest-order block address (even address)
B0-7: Any even address in blocks 0 to 7, program ROM 2, or data flash
B8: Any even address in blocks after 8.
x: Any even address in user ROM area
xx: Eight high-order bits of command code (ignored)
4.5 Program
The program differs between the M16C/62P Group and the M16C/63, 64, 64A and 65 Groups. Table 4.4 lists the differences in the programs.

Table 4.4 Differences in programs

<table>
<thead>
<tr>
<th>Item</th>
<th>M16C/62P Group</th>
<th>M16C/63, M16C/64, M16C/64A and M16C/65 Groups</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write unit</td>
<td>In 1-word (2-byte) units</td>
<td>In 2-word (4-byte) units</td>
</tr>
<tr>
<td>Command code</td>
<td>xx40h</td>
<td>xx41h</td>
</tr>
</tbody>
</table>

4.6 User Boot Function
In the M16C/63, 64, 64A and 65 Groups, user boot functions is added to select boot mode and user boot mode by the status of a port. Refer to each device's hardware manual for details on the boot function.

4.7 Suspend Function
The M16C/63 Group includes a suspend function for suspending automatic programming and erasure. Refer to the M16C/63 Group hardware manual for details.
5. Reference Documents

Hardware Manuals
M16C/62P Group Hardware Manual
M16C/63 Group Hardware Manual
M16C/64 Group Hardware Manual
M16C/64A Group Hardware Manual
M16C/65 Group Hardware Manual
The latest versions can be downloaded from the Renesas Technology website.

Technical Update/Technical News
The latest information can be downloaded from the Renesas Technology website.
REVISION HISTORY

<table>
<thead>
<tr>
<th>Rev.</th>
<th>Date</th>
<th>Description</th>
<th>Page</th>
<th>Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00</td>
<td>Nov. 30, 2009</td>
<td>First Edition issued</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Notes regarding these materials

1. This document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas products for their use. Renesas neither makes warranties or representations with respect to the accuracy or completeness of the information contained in this document nor grants any license to any intellectual property rights or any other rights of Renesas or any third party with respect to the information in this document.

2. Renesas shall have no liability for damages or infringement of any intellectual property or other rights arising out of the use of any information in this document, including, but not limited to, product data, diagrams, charts, programs, algorithms, and application circuit examples.

3. You should not use the products or the technology described in this document for the purpose of military applications such as the development of weapons of mass destruction or for the purpose of any other military use. When exporting the products or technology described herein, you should follow the applicable export control laws and regulations, and procedures required by such laws and regulations.

4. All information included in this document such as product data, diagrams, charts, programs, algorithms, and application circuit examples, is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas products listed in this document, please confirm the latest product information with a Renesas sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas such as that disclosed through our website. (http://www.renesas.com)

5. Renesas has used reasonable care in compiling the information included in this document, but Renesas assumes no liability whatsoever for any damages incurred as a result of errors or omissions in the information included in this document.

6. When using or otherwise relying on the information in this document, you should evaluate the information in light of the total system before deciding about the applicability of such information to the intended application. Renesas makes no representations, warranties or guarantees regarding the suitability of its products for any particular application and specifically disclaims any liability arising out of the application and use of the information in this document or Renesas products.

7. With the exception of products specified by Renesas as suitable for automobile applications, Renesas products are not designed, manufactured or tested for applications or otherwise in systems the failure or malfunction of which may cause a direct threat to human life or create a risk of human injury or which require especially high quality and reliability such as safety systems, or equipment or systems for transportation and traffic, healthcare, combustion control, aerospace and aeronautics, nuclear power, or underwater communication transmission. If you are considering the use of our products for such purposes, please contact a Renesas sales office beforehand. Renesas shall have no liability for damages arising out of the uses set forth above.

8. Notwithstanding the preceding paragraph, you should not use Renesas products for the purposes listed below:
 (1) artificial life support devices or systems
 (2) surgical implantations
 (3) healthcare intervention (e.g., excision, administration of medication, etc.)
 (4) any other purposes that pose a direct threat to human life

Renesas shall have no liability for damages arising out of the uses set forth in the above and purchasers who elect to use Renesas products in any of the foregoing applications shall indemnify and hold harmless Renesas Technology Corp., its affiliated companies and their officers, directors, and employees against any and all damages arising out of such applications.

9. You should use the products described herein within the range specified by Renesas, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas shall have no liability for malfunctions or damages arising out of the use of Renesas products beyond such specified ranges.

10. Although Renesas endeavors to improve the quality and reliability of its products, IC products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Please be sure to implement safety measures to guard against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other applicable measures. Among others, since the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.

11. In case Renesas products listed in this document are detached from the products to which the Renesas products are attached or affixed, the risk of accident such as swallowing by infants and small children is very high. You should implement safety measures so that Renesas products may not be easily detached from your products. Renesas shall have no liability for damages arising out of such detachment.

12. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written approval from Renesas.

13. Please contact a Renesas sales office if you have any questions regarding the information contained in this document, Renesas semiconductor products, or if you have any other inquiries.

© 2009. Renesas Technology Corp., All rights reserved. Printed in Japan.